
 1

A Novel Constructive Optimizer Neural Network for

the Traveling Salesman Problem

M. Saadatmand-Tarzjan*,1, M. Khademi2, M. R. Akbarzadeh-T.2, H. Abrishami Moghaddam3

1. Department of Electrical Engineering, Tarbiat Modares University
Nasr Bridge, P.O. Box 14155-111, Tehran, Iran

saadatmand@kiaeee.org

2. Department of Electrical Engineering, Ferdowsi University of Mashhad
Vakil Abad Blv., P.O. Box 91775-1111, Mashhad, Iran

akbarzadeh@ieee.org
khademi@um.ac.ir

3. Electrical Engineering Department, K.N. Toosi University of Technology,
Seyed Khandan P.O. Box 16315-1355, Tehran, Iran

moghadam@saba.kntu.ac.ir

*Corresponding Author

 2

Corresponding Author

 M. Saadatmand-Tarzjan (Ph.D. Student)

 Electrical Engineering Department

 Tarbiat Modares University

 Intersection of Jalale-Ale-Ahmad and Shahid-Chamran Highways

 P.O. Box 14155-194

 Tehran, Iran

 Phone: +98 912 515 7462

 Fax: +98 21 8005040

 E-mail: saadatmand@kiaeee.org

 3

A Novel Constructive-Optimizer Neural Network for

the Traveling Salesman Problem

M. Saadatmand-Tarzjan, M. Khademi, M. R. Akbarzadeh-T., H. Abrishami Moghaddam

Abstract

In this paper, a novel constructive-optimizer neural network (CONN) is proposed for the traveling

salesman problem (TSP). CONN uses a feedback structure similar to Hopfield-type NNs and a competitive

training algorithm similar to the Kohonen-type self-organizing maps. Consequently, CONN is composed of a

constructive part which grows the tour and an optimizer part to optimize it. In the training algorithm, an

initial tour is created first and introduced to CONN. Then, it is trained in the constructive phase for adding a

number of cities to the tour. Next, the training algorithm switches to the optimizer phase for optimizing the

current tour by displacing the tour cities. After convergence in this phase, the training algorithm switches to

the constructive phase anew and is continued until all cities are added to the tour. Furthermore, we

investigate a relationship between the number of TSP cities and the number of cities to be added in each

constructive phase.

CONN was tested on nine sets of benchmark TSPs from TSPLIB to demonstrate its performance and

efficiency. It performed better than several typical NNs, including KNIES_TSP_Local, KNIES_TSP_Global,

Budinich’s SOM, Co-Adaptive Net, and multi-valued Hopfield network as wall as computationally-

comparable variants of the simulated annealing algorithm, in terms of both CPU time and accuracy.

Furthermore, CONN converged considerably faster than expanding SOM (ESOM) and evolved integrated

SOM (eISOM) and generated shorter tours compared to KNIES_DECOMPOSE. Although CONN is not yet

comparable in terms of accuracy with some sophisticated computationally-intensive algorithms, it converges

significantly faster than them. Generally speaking, CONN provides the best compromise between CPU time

and accuracy among currently reported neural networks for TSP.

Key words

Traveling Salesman Problem (TSP), Constructive-Optimizer Neural Network (CONN), Hopfield-Type

Neural Networks, Kohonen-Type Self-Organizing Maps

 4

I. Introduction

Combinatorial optimization tasks such as the traveling salesman problem (TSP) belong to a family of NP-

Complete problems [1] whose computational complexity rises exponentially by increasing the number of

parameters. Finding suboptimal solutions with a reasonable cost may be more advantageous in many of

current TSP applications such as printed circuit boards manufacturing [2, 3], data transmission in computer

networks [4], power distribution networks [5], image processing and pattern recognition [6], robot navigation

[7], and data partitioning [8].

TSP consists of finding the shortest closed tour visiting n cities. To date, several methods based on

deterministic or probabilistic heuristics have been proposed for solving TSP. These include classical search

maps [9], simulated annealing (SA) [10], artificial neural networks (Kohonen-type self-organizing maps [11-

16], Hopfield-type neural networks [17-19], Boolean neural network [20], and chaotic neural network [21]),

genetic algorithms (GA) [22, 23], evolutionary programming [24], ant colony optimization (ACO) [25, 26],

population-based incremental learning [27], tabu search [28], and fine-tuned learning [29]. Since each of the

above approaches has weak points as well as strengths, determining a superior approach is nontrivial. For

example, several researchers reported good solution quality of the evolutionary methods such as GA for off-

line applications [30], while others preferred algorithms such as ACO [25] and SA [31] for their efficiency.

Although ACO and SA may be faster than evolutionary algorithms, they are still slower than neural

approaches [14]. In fact, neural approaches are generally considered to be fast with inferior solution quality

[32]. Therefore, developing a neural network (NN) structure that provides a good TSP solution with less

computational complexity remains a challenging endeavor.

Among the above approaches, the Hopfield-type neural network (HNN) and Kohonen-type self-

organizing map (K-SOM) are paradigmatically similar to the proposed approach. HNN generally has a

second order energy function that determines its structure and behavior. Moreover, it uses a negative

feedback to minimize the energy function during NN training. In spite of its fast convergence speed, a major

drawback of HNN for solving TSP is getting caught in local minima of the energy function [29, 32]. A

number of solutions have been proposed to avoid local minima of the energy function in HNN. For example,

Lee and Sheu [33] addressed this problem by adding an adaptable corrective input to neurons.

In contrast to HNN, K-SOM has a slow convergence speed, mainly because of its competitive training

algorithm [11]. Nevertheless, it attracted many research interests to explore and enhance its capability to

 5

solve TSP due to its intuitive appeal, relative simplicity, and promising performance [14]. Because of its

relatively poor performance, it had been previously argued that K-SOM may not be the best benchmark to

evaluate the effectiveness of NNs for TSP optimization [32]. However, recent improvements in K-SOM

demonstrated their potential ability for solving TSP. Generally, there are three main streams to enhance the

original SOM [11-13]: i) introducing a variable structure network, ii) amending the competition criterion,

and iii) enhancing the learning rule. Recently, Leung et al. [14] proposed an expanding learning rule

(ESOM) which can generate shorter tours than several typical K-SOMs such as convex elastic net (CEN)

[15] and Budinich’s SOM [16]. Furthermore, Jin et al. [11] developed an integrated SOM (ISOM) which

incorporates the above learning mechanisms. They also optimized ISOM using a genetic algorithm to obtain

evolved ISOM (eISOM). Another example is Co-Adaptive Net [34] which allows neurons to co-operate and

compete amongst themselves depending on their situation.

In this paper, a novel constructive-optimizer NN (CONN) is introduced to provide the best compromise

between the convergence speed and solution quality. The main idea of the proposed NN is taking advantage

of HNN’s fast convergence and K-SOM’s solution quality. For this purpose, CONN uses a feedback

structure similar to HNN and a competitive training algorithm similar to K-SOM. Consequently, CONN is

composed of a constructive part which grows the tour and an optimizer part to optimize it. In the training

algorithm, an initial tour is created first and introduced to CONN. We show that depending on the number of

TSP cities, one of three different algorithms including the cheapest link, convex hull, and hull through four

outermost cities can be used to generate the initial tour. Then, CONN is trained in the constructive phase for

adding a number of cities to the tour. Next, the training algorithm switches to the optimizer phase for

optimizing the current tour by displacing the tour cities. After convergence in this phase, the training

algorithm switches to the constructive phase anew and is continued until all cities are added to the tour.

Finally, we investigate a relationship between the number of TSP cities and the number of cities to be added

in each constructive phase.

The paper is organized as follows. In the next section, we present the proposed basic optimizer NN

(BONN). CONN is presented in Section III as an extension of BONN. Section IV is devoted to evaluate the

performance of CONN compared to a large number of its counterparts using nine sets of TSP benchmarks.

Finally, conclusions are drawn in Section V.

 6

Notations used in this paper are fairly standard. Boldface symbols are used for vectors (in lower case

letters). We also have the following notations:

n total number of TSP cities;

m number of cities on the tour (tour cities);

ic i-th city;

),(jiD cc distance function between city pair),(ji cc ;

l
ix output vector of the i-th neuron in the l-th layer;

l
jix , j-th component of the output vector l

ix ;

kψ current tour in the k-th step;

k
jψ j-th city on the tour in the k-th step;

ke energy function value in the k-th step;

kQ set of all tour cities in the k-th step;

kR set of all nontour cities in the k-th step.

II. Basic optimizer neural network

BONN [35] is considered as an elementary structure of CONN. It is a simple optimizer neural network

which uses a feedback configuration as well as a competitive training algorithm. In each step of its training

algorithm, BONN improves the current tour until no further improvement can be achieved (convergence to

the final solution).

(Figure 1)

A. BONN structure

Figure 1 illustrates the BONN structure for a 3-city TSP which includes i) the tour, ii) link, iii) link

competitive, and iv) tour competitive layers. Although the output of typical neurons is usually a scalar, the

output of each neuron in BONN is a vector whose content is dependent on the layer. All cities in BONN are

on the tour, i.e. nm = . This paper addresses the symmetric TSP, where),(),(ijDjiD = .

 7

The first layer of BONN (the tour layer) specifies the current tour by m neurons in which the neuron

output 1
jx (mj ,,2,1 K=) indicates the j-th city on the tour. It means that the current tour is determined by:

(1)mjm
k
j

k ,,2,1],,,,[][11
2

1
1 KK === xxxψψ

The tour is a closed cycle; hence, the 0-th neuron is the same as the m-th one and the (m+1)-th neuron is the

same as the first one in the layer. As will be shown later, the tour cities in the first layer are authorized to be

displaced between neurons. The BONN energy function is simply defined as the tour length:

(2)∑
=

+=
m

j
jj

k De
1

1
1

1),(xx

In order to visit each city only once, this energy function is minimized with the following constraint:

(3){ } 11:,,2,1 ijmij xx ≠∈≠∀ K

The training algorithm minimizes the BONN energy function constrained by (3) in two steps. First, BONN is

initialized by an initial valid tour that satisfies the constraint. Second, the initial tour is iteratively improved

(while satisfying the constraint) until no further improvement can be achieved.

The second layer (the link layer) also contains m neurons; each one indicates a tour link which connects

two adjacent cities on the tour. The output of the neurons in this layer is given by:

(4)[] [] mjjjjjj ,,2,1 ,,, 1
1

12
2,

2
1,

2 K=== +xxxxx

The third layer (the link competitive layer) has 1+n neurons. One of them is a threshold neuron whose

output is a vector containing the length of the tour links:

(5)[] mjDt jjj ,,2,1,),(][2
2,

2
1,

33 L=== xxt

The remaining neurons in the third layer are assigned to the cities in a one to one and ordered manner

(hereafter, each neuron is indicated by its corresponding city and vice versa). In each neuron, the activation

value of each link is given by:

(6)mjnitDDv jjiijji ,,2,1 ,,2,1 ,),(),(32
2,

2
1,

3
, LK ==−+= xccx

where 3
, jiv indicates the tour length increase due to inserted city ic between the cities in the j-th link

[]2
2,

2
1, , jj xx . The output of each neuron in the third layer is a vector including the smallest activation value and

its index:

 8

(7)[] () () nivvxx jiPjjiPj

T
iii

ii

,,2,1,minarg,min, 3
,

3
,

3
2,

3
1,

3 K=⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛==

∈∈
x

where Pi is a set of links excluding ci:

(8){ }ijji mjjP cxx ≠== 2
2,

2
1, ,;,2,1 K .

In more details, in each neuron of the third layer, a competition occurs among all of the second layer neurons

and finally, the winning neuron activation value and its corresponding index are retained as the neuron’s

output.

The fourth layer (the tour competitive layer) also has n+1 neurons. One of them is again a threshold

neuron whose output is a vector containing the decrease in the tour length due to removal of each city from

the current tour:

(9)niti ,,2,1],[44 K==t

where

(10)
⎪⎩

⎪
⎨
⎧

∈

∈==−+
= ++++

k
i

k
ijjjjjjjj

i
R

QDDD
t

c

cxxxxxxxx

0

),(),(),(2
1,1

2
2,

2
2,1

2
1,

2
2,1

2
1,1

2
2,

2
1,4

where,

(11)},,2,1{ 1 miQ i
k K== x

(12)k
i

k QniR −== },,2,1{ Kc .

The remaining neurons in the fourth layer are also assigned to the cities in a one to one and ordered manner

(hereafter, each neuron is indicated by its corresponding city and vice versa). The activation value of each

neuron in this layer is computed by subtracting its corresponding threshold from its input as follows:

(13),n,,i=txv iii L21 , 43
1,

4 −=

Indeed, the activation value of the i-th neuron indicates the tour length increase due to displaced city ci from

its current location to the new location between cities in the link specified by
3

2,ix . A competition is then

occurred among the neurons in this layer and the neuron with the smallest increase in the tour length wins:

(14)⎟
⎠
⎞

⎜
⎝
⎛=

∈
)(minarg 4

opt i
Qi

v
k

ω

Finally, the outputs of all neurons except the winning one are set to zero as follows:

 9

(15)opt
4 ,0 ω≠= ixi

If the activation value of the winning neuron is negative, its output will indicate a new location for city ci

according to (16). Otherwise, the NN convergence is achieved and the winning neuron’s output is set to zero

as well.

(16))(43
2,

4
optoptopt ωωω ϕ vxx ×=

where)(⋅ϕ is a hard limiter function defined by:

(17)
⎩
⎨
⎧ <

=
otherwise0

0a1
(a)ϕ

(Table 1)

B. BONN training algorithm

The BONN training algorithm is summarized in Table 1. Since at each training step, only one city is

displaced from its current location, the final tour usually satisfies constraint (3) like the initial tour. In more

details, displacing a city from its current location to another location neither creates a loop on the tour nor

changes the number of tour cities. Therefore, if the initial tour satisfies constraint (3), it will be remained

satisfied after each displacement.

C. BONN convergence analysis

According to (14), in the k-th step of the training algorithm, the winning neuron optω gives px
opt

=4
ω as

its output in the optimizer phase. Furthermore, as stated in (19), the corresponding city
optωc is located in

location a on the current tour. According to (4) and (5), the threshold value corresponding to the p-th link is

given by:

(21)),(1
1

13
+= ppp Dt xx

Then, using (6) and (7), the output of the neuron optω in the third layer is obtained as follows:

(22)),(),(),(1
1

11
1

13
1, ++ −+= pppp DDDx

optoptopt
xxxccx ωωω

Similarly, the threshold value of the neuron optω in the fourth layer can be computed from (4) and (10) as:

 10

(23)),(),(),(1
1

1
1

1
1

1
1

4
+−+− −+= aaaa DDDt

optoptopt
xxxccx ωωω

Using (13), the activation value of the neuron optω in the fourth layer is given by:

(24) 0),(),(),(),(),(),(1
1

1
1

1
1

1
1

1
1

11
1

14 <⎟
⎠
⎞

⎜
⎝
⎛ −+−⎟

⎠
⎞

⎜
⎝
⎛ −+= +−+−++ aaaapppp DDDDDDv

optoptoptoptopt
xxxccxxxxccx ωωωωω

According to (2), the value of CONN energy function in the k-th step is given by:

(25)),(),(),(),(1
1

11
1

1
1

,,1
1

1
1

1
++−

−≠
=

+ +++
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑ ppaa

paaj

m

j
jj

k DDDDe
optopt

xxxccxxx ωω

The training algorithm will displace the winning city
optωc from its current location, a, to the new location

between cities in the link specified by
4

opt
xω . This will form the next tour as indicated by (20). Hence, the

value of CONN energy function in the next step, k+1, will be given by:

(26)),(),(),(),(1
1

1
1

1
1

1

,,1
1

1
1

11
+−+

−≠
=

+
+ +++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑ aapp

paaj

m

j
jj

k DDDDe
optopt

xxxccxxx ωω

Finally, using (24)-(26), we have:

(27) 41
optωvee kk +=+

The above equation states that in each step of the training algorithm, the energy function value is updated by

adding 4
optωv to its value in the previous step. According to (16), the activation value of the winning neuron,

optω , in the fourth layer should be negative; otherwise, the NN convergence is achieved. Consequently, we

may write:

(28) kk ee <+1

It means that the energy function decreases monotonically during BONN training. Therefore, BONN is

stable in the sense of Lyapunov [36] and will converge to a local minimum.

D. Relation between BONN and typical heuristics

As explained in the previous subsections, BONN is trained by causing a competition among the tour

neurons in each step and displacing the winning city from its current location to a better location on the tour.

 11

In this regard, BONN is algorithmically similar to the family of 2.5-Opt heuristics [36]. However, BONN is

presented here in the context of neural networks, since it uses a feedback configuration similar to HNN and a

competitive training algorithm similar to K-SOM. Consequently, the computational complexity of the

proposed neural network is comparable with typical NNs for TSP. Furthermore, as will be seen in the next

section, BONN is used as an elementary structure to develop a constructive-optimizer neural network with

the ability to avoid weak local minima of the energy function. Similar strategy has already been adopted by

other researchers [37] who presented well-known 2-Opt and 3-Opt heuristics in terms of NN. Obviously, NN

is just an appropriate framework for developing the proposed algorithm and it can be presented and used in

different contexts like typical heuristics.

III. Constructive-optimizer neural network

Similar to all energy-based NNs, BONN is highly sensitive to the initial conditions and apt to be caught

in local minima of its energy function [35]. Here, a constructive approach is proposed for the initialization

and extension of BONN in order to avoid weak local minima of the energy function.

As stated in Section II, all cities in BONN are on the tour (m=n). According to (14), when nm < , the

competition in the fourth layer occurs only among the tour cities (belonging to the set Qk). Consequently, the

nontour cities (belonging to the set Rk) do not take part in the training process. In each step of the BONN

training algorithm, a tour city is displaced from its current location to a better one. Hence, the number of tour

cities remains fixed at m during BONN training. A question arises here: how can the tour grow during

training? The main idea behind the proposed CONN is that, in each constructive phase, a number of cities

from the set Rk are added to the current tour and then, the new tour is optimized by BONN in the optimizer

phase.

A. CONN structure

According to (10), the thresholds of nontour neurons are set to zero and their activation value is equal to

the tour length increase due to inserting the corresponding city on the tour. Consequently, the nontour city

with the smallest activation value in the fourth layer may be the best choice to be added to the tour. In other

words, the winning nontour city in the fourth layer (belonging to Rk) is likely the best choice for inserting on

the current tour.

 12

(Figure 2)

The above procedure suggests the extension of BONN to a constructive-optimizer structure (CONN) as

illustrated in Figure 2. Neurons of the fourth layer in CONN are divided into two parts: i) the optimizer part

which consists of tour neurons (Qk) and ii) the constructive part including nontour neurons (Rk). The

optimizer and constructive parts are in charge of optimizing and growing the tour, respectively. All the

neurons in CONN have the same operation as in BONN except the neurons in the fourth layer. In this layer,

optimizer part neurons compete with each other according to (14) to optimize the current tour, while

constructive part neurons compete according to (29) to extend the tour.

(29)⎟
⎠
⎞

⎜
⎝
⎛=

∈
)(minarg 4

cns i
Ri

v
k

ω

Furthermore, the winning neuron output in the constructive part is obtained by (30):

(30)3
2,

4
cnscns ωω xx =

Hence:

(31)cnsopt
4 ,,0 ωω≠= ixi

(Figure 3)

B. CONN training algorithm

The training algorithm of CONN has two phases including constructive and optimizer as shown in the

block diagram of Figure 3. The training algorithm starts with generating an initial γ-city tour as will be

explained in Subsection III-D. Using the initial tour, the output of the neurons in the first layer is computed

according to (18), by setting γ=m . CONN first extends the tour in the constructive phase. In each step of

this phase, a nontour neuron in the fourth layer wins and its corresponding city is inserted on the tour as

follows:

(32)],,,,,,,[121
1

4
cnscns

4
cns

k
m

k
x

k
x

kkk xxcxxxψ KK
+

+ =
ωω ω

 13

The winning neuron in the fourth layer is consequently displaced from the constructive part (Rk) to the

optimizer part (Qk). Obviously, adding a new city to the current tour increases the number of neurons in the

first and second layers (m) by one. This process is repeated until the number of cities on the tour augments to

m=γ+λ.

After construction, the training algorithm switches to the optimizer phase. In each step of this phase, the

winning tour neuron in the fourth layer is displaced from its current location to a better location on the tour,

according to the BONN training algorithm presented in Table 1. This process is repeated until the NN

convergence is achieved in the optimizer phase. Then, the training algorithm switches again to the

constructive phase and the same procedure is iterated until the tour includes all cities.

C. CONN convergence analysis

Since CONN uses the same optimization algorithm as BONN, its convergence in the optimizer phase can

be demonstrated as in Subsection II-C. Similar to (27), it can be simply shown that in each step of the

constructive phase, the energy function value increases as follows:

(33)41
cnsωvee kk +=+

Since in each step of the constructive phase, only one city is inserted on the tour and the number of cities

is finite, this phase of the training algorithm can not make the algorithm instable. Indeed, the constructive

phase initializes the optimizer phase in each switching stage. Therefore, CONN is also stable in the sense of

Lyapunov as well as BONN and finally converges to a local minimum.

D. Initial tour generation

The initial tour may significantly affect the CONN performance. CONN uses only local information to

grow and optimize the tour, while the initial tour can provide some global information for it. We studied

three different algorithms to generate the initial tour: i) the cheapest link [38], ii) hull through four outermost

cities [39], and iii) convex hull [40]. CONN uses one of these algorithms to generate the initial tour for each

TSP, based on the total number of cities as will be explained in Subsection IV-B.

i) Cheapest link algorithm: This algorithm is used to create the initial tour by arranging a number of

outermost cities on a tour. According to (34), γ outermost cities },,{
1 γϕϕ cc K can be found by maximizing

 14

the average intra-distance between these cities and all the TSP cities as well as maximizing the average inter-

distance between them in γ steps.

(34){ } { }p

p

q
i

n

j
ji

ip n
p

D

n

D
q

ϕϕϕϕ
ϕ

,,,,,2,1,
),(),(

maxarg 21
11

1 KK −=Φ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+=
∑∑

==

Φ∈+

cccc

The value of γ may depend on the topology and number of TSP cities. Our simulations resulted in the

following experimental equation to determine γ as a function of n for good performance:

(35)[]()()4109460320minmax , ,n-.n.γ +×=

ii) Hull through four outermost cities: This algorithm simply creates a 4-city tour that consists of four

outermost cities (4=γ).

iii) Convex hull: This algorithm makes a convex hull as the initial tour whose vertices are chosen from TSP

cities such that the resultant hull surrounds all the remaining cities [14]. Obviously, the value of γ is

determined by the algorithm and depends on the topology and number of TSP cities.

(Table 2)

E. Computational complexity

The most computationally-complex equations of CONN are (6), (7), and (10) which are of mn order

(Table 2). These equations are used in both constructive and optimizer phases of CONN. Hence, the overall

computational volume of CONN is KnO ×)(2 , where K is the total number of CONN iterations. Suppose that

the total number of optimizer phase iterations is β. Obviously, the number of constructive phase iterations is

γ−n . Hence, the total number of training algorithm iterations is γβ −+= nK . As will be demonstrated in

Subsection IV-B, K is usually smaller than 2n, since we generally have n<β . Therefore, the overall

computational complexity of CONN seems to be of)(3nO .

However, in each step of the optimizer phase, only one tour city is displaced. Consequently, the above

equations should not necessarily be computed for all cities. More specifically, suppose that the city
optωc has

won in the optimizer phase of the training algorithm and it has been placed at the location a on the current

tour (
opt

1
ωcx =a). The next tour will be generated by displacing the city

optωc from the location a to the new

 15

location between cities in the link specified by
4

optωx on the current tour. Hence, (10) should be computed

only for five cities including
k
x

k
a

k
a

k
a 4

opt
,,, 11 ω
xxxx +− and

k
x 14

opt +ω
x . Similarly, if in the constructive phase the

city
cnsωc wins, (10) will be computed only for three cities including

k
x

k
x 14

cns
4

cns
, +ωω
xx and

k
x 24

cns +x . Therefore,

the computational complexity of (10) is reduced to)(nO as shown in the third column of Table 2.

In the same manner, (6) should be computed for only five links including:

(36)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ++−
2

2
2

1
222

1opt 4
opt

4
opt

4
opt

,,,,
ωωω xxxaaM xxxxx

in each step of the optimizer phase and two links including:

(37)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= +
2

1
2

cns 4
cns

4
cns

,
ωω xxM xx

in each step of the constructive phase. Hence, the computational complexity of (6) is also reduced to)(nO as

shown in Table 2.

Furthermore, efficient implementation of (7) can reduce its complexity. Note that in each step of the

optimizer phase, only a limited number of
4
, jiv are modified. In more details, for the i-th neuron in the third

layer, if the best link in the previous step (
3

2,ix) does not change in the current step:

(38)opt
2

3
2,

M
ix ∉x

we will redefine Pi as follows:

(39){ } { }ijjxi mjjMP
i

cxxx ≠=−= 2
2,

2
1,

2
opt ,;,2,13

2,
KU .

Otherwise, the set Pi is computed by (8). Using (39) for all neurons results in the computational complexity

of)(nO for (7). However, (38) may not be satisfied for all cities. Consequently, using the above efficient

implementation, the complexity order of (7) reduces to)(2no . In the same manner, similar results can be

obtained for the constructive phase. Therefore, the overall computational complexity of CONN reduces to

)(3no as shown in Table 2 and Figure 7.

 16

(Figure 4)

F. Example

We give an example to further clarify the CONN operation. Consider a 6-city TSP (n=6), consisting of

the following cities:

]0,1[],1,1[],2,1[],2,0[],1,0[],0,0[654321 ====== cccccc

where each vector indicates the coordinates of the corresponding city in the 2-dimensional space. Suppose

that the initial tour is []63542
0 ,,,, cccccψ = as shown in Figure 4-a, setting m=5 and k=0. Furthermore, the

function D(.) computes the Manhattan distance between each city pair. According to (18), the outputs of the

first layer neurons are determined as follows:

6
1
53

1
45

1
34

1
22

1
1 ,,,, cxcxcxcxcx =====

Using (11) and (12), Q0 and R0 are defined as { }63542
0 ,,,, ccccc=Q and { }1

0 c=R , respectively. The current

value of the energy function is given by (2) as 10232120 =++++=e . Now, suppose that the NN is

trained in the optimizer phase. The output vectors of the second layer neurons are given by (4) as follows:

[] [] [] [] []26
2
563

2
435

2
354

2
242

2
1 ,,,,,,,,, ccxccxccxccxccx =====

The output vector of the threshold neuron in the third layer is computed by (5) as []2,3,2,1,23 =t . The

activation values of the remaining neurons in this layer are determined by (6) as follows:

[] [] []
[] [] []0,0,2,2,2,0,0,0,0,0,2,0,0,0,0

2,0,0,2,0,0,0,1,2,0,0,0,2,4,2
3
6

3
5

3
4

3
3

3
2

3
1

===

===

vvv

vvv

According to (7), the outputs of these neurons are given by:

[] [] []
[] [] []1,2,1,0,3,0

1,0,4,0,4,0
3
6

3
5

3
4

3
3

3
2

3
1

===

===

xxx

xxx

The output vector of the threshold neuron in the fourth layer is determined by (10) as []4,2,2,4,2,04 =t .

Then, the activation values of the fourth layer neurons are computed by (13) as:

2,2,2,4,2,0 4
6

4
5

4
4

4
3

4
2

4
1 −=−=−=−=−== vvvvvv

Therefore, according to (14), the third neuron in the fourth layer wins (3opt =ω). The outputs of the neurons

in this layer are given by (16), (30) and (31) as:

 17

0,0,0,1,0,0 4
6

4
5

4
4

4
3

4
2

4
1 ====== xxxxxx

Hence, the city 3c will be displaced from the 4th location to the 2nd location on the tour (Figure 4-b):

[]65432
1 ,,,, cccccψ =

According to (18), the new outputs of the first layer neurons will be (setting k=1):

6
1
55

1
44

1
33

1
22

1
1 ,,,, cxcxcxcxcx =====

The current value of the energy function is 6410401
opt

=−=+= ωvee (see Eqn. 27). It can be easily

shown that CONN can not further improve the current tour and it converges in the optimizer phase. Now, the

CONN training algorithm switches to the constructive phase. In this phase, CONN proceeds forward in the

same manner as in the optimizer phase. The activation values of the fourth layer neurons are obtained as

follows:

0,0,2,2,2,0 4
6

4
5

4
4

4
3

4
2

4
1 ====== vvvvvv

According to (29), the first neuron in the fourth layer wins (1cst =ω , 54
cst

=ωx). Using (30)-(32) we have:

[]165432
1 ,,,,, ccccccψ =

It means that the nontour city 1c is inserted at the 6th location of the tour as shown in Figure 4-c. Now, the

current value of the energy function is 606412
cns

=+=+= ωvee (see Eqn. 33). At this stage, all cities have

been added to the tour. Therefore, the CONN training algorithm switches to the optimizer phase again. The

training algorithm can not further improve the tour. Hence, CONN converges to the final solution.

(Table 3)

IV. Experimental results

The performance of CONN was evaluated using nine sets of experiments. All the experimental results

were obtained by an AMD ATHLON XP 1.4-GHz PC with 1-GB main memory using Matlab environment.

For comparing CONN with other algorithms in terms of CPU time, we scaled the CPU time of each

algorithm by an appropriate scaling coefficient related to its processing system. Similar to the approach used

in [34], we utilized the results reported in [41] to obtain the scaling coefficients as shown in Table 3. Note

that the codes made by 3GL programming languages such as C/C++, PASCAL, and FORTRAN are more

efficient than M-codes in the MATLAB interpreter [42]. Nevertheless, we did not consider any scaling

 18

coefficient for comparing MATLAB M-codes with 3GL codes. In other words, it is expected to obtain better

performance by implementing our algorithm using an efficient programming language like C++.

A. Adjusting the CONN parameters

Our primary experiments were performed on a set of 21 benchmark TSPs taken from a frequently-used

TSP library called TSPLIB collected by Reinelt [43]. The number of cities ranges from 52 (small-scale) to

5915 (large-scale). CONN was used to solve each problem using 5 different values for λ. For each λ, CONN

was executed 10 times to obtain the average CPU time (T). The percent differences have been computed

using (40):

(40)100
opt

opt ×
−

=
l

ll
δ

where, l and lopt are the algorithm and optimal tour lengths, respectively. Note that for each TSP, CONN

gives the same solution in all runs. Hence, the average percent difference (δ) is equal to each percent

difference for CONN, i.e. CONNCONN δδ = . The results are shown in Table 4. The best solution for each

benchmark TSP is shown by bold-faced text. As shown, augmenting the number of TSP cities (n) increases

the appropriate number of cities to be added in each constructive phase (λa). As illustrated in Figure 5, the

following equation can be fitted for determining λa as a function of n:

(41)() () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ −×+×−×= 10,6334ln9.3476ln631ln38max 23 nnnaλ

(Table 4)

(Figure 5)

B. CONN performance on TSPLIB problems

The second set of experiments was performed on 91 benchmark TSPs from TSPLIB with 14 to 5923

cities. CONN was executed for each TSP with three different initial tour generation algorithms including the

cheapest link, convex hull, and hull through four outermost cities. The results are listed in Table 5. For each

benchmark problem, the first four columns of this table are: i) the TSP name, ii) number of cities (n), iii)

optimal tour length (optimal solution) as reported in TSPLIB, and iv) appropriate number of cities to be

 19

added in each constructive phase (λa) as given by (41), respectively. For each initial tour generation

algorithm, the subsequent columns give the CONN percent difference (δδ =), number of cities on the initial

tour (γ), number of optimizer phase iterations (β), number of total CONN iterations (K), and average CONN

CPU Time per run, respectively. As shown, the cheapest link algorithm gives the best average results. More

specifically, the cheapest link algorithm provides the best performance for TSPs with 130<n . The convex

hull algorithm performs better for 900130 << n . Finally, the hull through four outermost cities is more

appropriate for n<900 . If TSP cities’ coordinates are not strictly specified, the convex hull algorithm can

not be used for the initial tour generation. In these cases, the cheapest link algorithm may be used. In the

experiments reported hereafter, the above criteria were used to generate the CONN initial tour. The CONN

solutions using this arrangement of algorithms are indicated in Table 5 by gray background.

(Table 5)

(Figure 6)

As shown in Table 5, for all benchmark TSPs we have 5.0<nβ , and consequently 5.1<nK (Figure 6).

Hence, according to the discussion presented in Subsection III-E, the overall computational order of CONN

is)(3no .

(Figure 7)

Figure 7 shows the CONN CPU time versus the number of cities for all benchmark TSPs. In this figure,

the CPU time versus n has been fitted to a polynomial whose degree is less than 3 (2.7).

(Figure 8)

As illustrated in Figure 8, the solution qualities of CONN are between 0.0% and 14% for all benchmark

TSPs. Furthermore, CONN gave the optimal solutions for 5 benchmark TSPs.

C. Comparing with computationally-complex algorithms

 20

In this section, we compared CONN with several non-neural computationally-complex algorithms. First,

the performance of CONN was compared with those of 2-Opt and 4-Opt heuristics, an accurate variant of SA

(SA1), and iterated tabu search (ITS), which were reported in [28]. The third set of experiments was

performed on 10 benchmark TSPs from TSPLIB with 99 (small-scale) to 493 cities (medium-scale). The

results are given in Table 6. CONN gave shorter tours than 2-Opt heuristic and converged several times

faster than it. However, CONN caused 0.7%, 3.6%, and 3.7% suboptimalities with respect to 4-Opt heuristic,

SA1 and ITS, respectively and converged significantly faster than all of them. In more details, the

computational complexity of these counterpart algorithms is KnO ×)(2 where K is the total number of tour

generations (iterations). As shown in Table 6, their CPU time as well as K increased rapidly by augmenting

the number of cities. In other word, K increased as a function of ln where 1≥l . Hence, the overall

computational complexity of these non-neural approaches is)(3nΩ . Therefore, CONN rapidly outstrips

them, since its computational complexity is)(3no . For example, to solve d198, CONN converged 5 and

1440 times faster than 2-Opt and 4-Opt heuristics, respectively. Another example is d493 for which CONN

converged 85 and 240 times faster than SA1 and ITS. Figure 9 illustrates these results in more details by

comparing the CPU times of CONN and SA1 for 64 benchmark TSPs from TSPLIB (the fourth set of

experiments) with 14 to 493 cities.

(Table 6)

(Figure 9)

The fifth set of experiments was performed on 14 benchmark TSPs from TSPLIB with 532 to 4461 cities

in order to compare the performances of CONN and three non-neural computationally-complex algorithms

including: i) greedy Lin–Kernighan (Greedy-LK) [44], ii) max-min ant system (MMAS) [25], and iii) an

evolutionary algorithm called NEA that utilizes the natural crossover operator [30]. These algorithms are

among the most accurate algorithms for TSP. According to Table 7, CONN resulted in significant efficiency

improvement and caused 8.1%, 8.3%, and 6.3% suboptimalities with respect to Greedy-LK, MMAS, and

NEA, respectively. It can be easily shown that the computational complexity of these counterparts may be

 21

also)(3nΩ ; hence CONN outstrips them quickly. For example, to solve fl3795, CONN converged 18 times

faster than Greedy LK. Another example is fl1577 for which CONN converged 65 times faster than MMAS.

The final example is fnl4461 where CONN converged 37 times faster than NEA.

Note that classical well-known heuristics like Greedy LK may result in better performance in some

problems by extensively tweaking and tuning the algorithm [44]. However, CONN is based on a much

simpler and more general-purpose approach. In other words, CONN is not a tool to compete with designer

algorithms [36]. Nevertheless, the above experimental results demonstrated that CONN can converge several

times faster than such heuristics while providing a reasonable percent difference in the solution quality.

(Table 7)

(Table 8)

D. Comparing with computationally-comparable algorithms

Table (8) compares CONN with several well-known heuristics including nearest neighbor, greedy,

Clarke-Wright, and Christofides whose computational complexities were reported in [36]. As shown, CONN

has a competitive computational complexity with respect to these algorithms. However, as illustrated in

Figure 8, it is apparent that CONN’s result extrapolates to being more than 10% above optimal for n≥104. In

this case, Christofides may give better results compared to CONN [36].

In the following experiments, we compared CONN with several state-of-the-art NNs, including KNIES

NNs [45], Budinich’s SOM [16], ESOM [14], eISOM [11], Co-Adaptive Net [34], and multi-valued

Hopfield network (MVHN) [37] as well as a computationally-comparable variant of SA (SA2) [14]. These

algorithms have comparable computational complexities with respect to CONN. However, it was claimed

that KNIES NNs had been the most efficient NN formerly presented in the literature for TSP [45, 46].

Similarly, ESOM [14] and eISOM [11] were introduced as the most accurate neural networks for TSP. Also,

Co-Adaptive Net was proposed as a neural approach with better performance than other NNs in terms of

accuracy and/or CPU time [34].

The basic idea of KNIES NNs is dispersing output neurons after SOM learning to make their statistics

equal to that of some cities. If all cities participate, it leads to the global version, KNIES_TSP_Global (KG).

 22

If only the represented cities are involved, it leads to the local version, KNIES_TSP_Local (KL).

KNIES_DECOMPOSE (KD) firstly decomposes large-scale TSPs by clustering cities using the learning

vector quantization approach. It then uses KNIES_TSP_Global to find a tour among the cluster centers.

Finally, it glues the Hamiltonian paths which are computed by KNIES_HPP_Global [47] for each cluster.

Budinich’s SOM is an effective implementation of the traditional SOM that maps each city onto a linear

order without ambiguity [16]. ESOM incorporates the neighborhood preserving and convex-hull properties

of TSP to generate shorter tours than Budinich’s SOM and CEN [14]. Furthermore, eISOM optimally

integrates the above two TSP properties used in ESOM with the mechanism of dragging excited neurons

toward the input cities [11]. Finally, Co-Adaptive Net involves not only unsupervised learning to train

neurons, but also allows neurons to co-operate and compete amongst themselves depending on their situation

[34].

The sixth set of experiments was conducted on 37 benchmark TSPs from TSPLIB with 51 to 5934 cities.

Table 9 lists the results of CONN and its nine counterparts. The best solution for each benchmark problem is

shown by bold-faced text. It may be observed from Table 9 that all algorithms can generate good tours. The

range of CONN solution qualities is at least 1.7% less than those of its counterparts except eISOM.

Furthermore, CONN produced a superior average solution quality than its counterparts except ESOM and

eISOM. In more details, CONN provided 1.2%, 2.9%, 0.7%, 1.0%, 1.3%, 0.5%, and 6.1% improvements

over SA2, KD, KL, KG, Budinich’s SOM, Co-Adaptive Net, and MVHN (two optimal), respectively.

Although CONN caused 0.6% and 2.2% suboptimalities with respect to ESOM and eISOM, respectively, it

converged significantly faster than both as will be further demonstrated. Moreover, CONN provided the best

solution for 13 benchmark TSPs. CONN has a smaller computational complexity than those of its

counterparts; hence, it eventually outstrips them as demonstrated in the following experiments.

(Table 9)

(Figure 10)

The seventh set of experiments were performed to compare the CPU time of CONN, Budinich’s SOM,

and ESOM [14], for 20 benchmark TSPs from TSPLIB. The number of cities in these benchmark problems

is between 51 and 1748. As illustrated in Figure 10, CONN converged, at least, 10 times faster compared to

 23

its counterparts for all benchmark TSPs. Regarding the solution qualities reported in Table 9, CONN

performed significantly better than Budinich’s SOM and ESOM. The execution time of eISOM is about 1.6

times longer than those of ESOM and Budinich’s SOM [11]. Consequently, CONN is more efficient than

eISOM, ESOM and Budinich’s SOM. For example, the CPU time of CONN, Budinich’s SOM, ESOM, and

eISOM are 12, 218, 228, and (about) 365 seconds, respectively, for vm1748.

The eighth set of experiments was run to compare CONN with Co-Adaptive Net in terms of CPU time for

20 benchmark TSPs from TSPLIB with 100 to 5934 cities. As shown in Figure 11 and Table 9, CONN beats

Co-Adaptive Net in terms of CPU time and solution quality.

(Figure 11)

The last set of experiments was mainly designed to compare CONN with KNIES NNs including KD, KL,

and KG in terms of CPU time for 18 benchmark TSPs from TSPLIB with 51 to 1002 cities. The

experimental results illustrated in Figure 12 and Table 9 demonstrate that CONN beats KL in terms of both

CPU time and solution quality. KG converged faster than CONN for TSPs with 442<n . However, for larger

n, CONN outstripped it since its computational order is smaller than KG. Although CONN converged slower

than KD, it provided 2.9% quality improvement over that (Table 9). Furthermore, the computational

complexity of CONN is smaller than KD and it eventually outstrips KD for TSPs with larger size. Generally,

among KNIES NNs, KL is the slowest NN with the highest accuracy, while KD is the fastest one with the

poorest solution quality.

(Figure 12)

V. Conclusion

In this paper, we proposed a constructive-optimizer NN called CONN for TSP. The main purpose of

designing CONN is to obtain a fast method while achieving near to optimal solution quality. CONN uses a

feedback-type structure similar to HNN and a competitive training algorithm similar to K-SOM. The main

idea behind the CONN training algorithm is as follows. CONN is firstly initialized by an initial tour. Then, it

grows and optimizes the current tour until all cities are added. CONN utilizes three different algorithms

including the cheapest link, convex hull, and hull through four outermost cities for generating the initial tour.

 24

For each TSP, it chooses one of these algorithms depending on the number of TSP cities. Furthermore,

CONN provides competitive efficiency compared to the previously introduced NNs for TSP. Its

computational intensity is less than o(n3).

CONN was compared with several computationally-complex algorithms including 4-Opt heuristics, SA1,

ITS, Greedy-LK, MMAS, and NEA for performance evaluation. Although these algorithms slightly

outperformed CONN in terms of accuracy, their computational complexity was several times larger which

limits their applications.

The CONN performance was also compared with those of several computationally comparable NNs,

including KNIES NNs, Budinich’s SOM, ESOM, eISOM, Co-Adaptive Net, and MVHN as well as SA2.

These state-of-the-art NNs were outperformed by CONN in terms of accuracy and/or CPU time. It provided

a better compromise between the CPU time and solution quality.

CONN uses a competitive training algorithm based on the minimum added tour length criterion. Its

performance can be improved by considering other criteria such as the shortest link for growing and

optimizing the tour in the training algorithm. Moreover, the initial tour has an important role in the CONN

performance. Hence, extending the CONN training algorithm as well as its structure to include other criteria

and improving the initial tour may result in better CONN performance in terms of both time and accuracy.

Acknowledgement

The authors appreciate the members of robotics group of Ferdowsi university of Mashhad for definition

of the problem and Dr. Nikbakht for his useful editing comments.

 25

References

[1] P. Crescenzi and V. Kann, “A compendium of NP optimization problems,” Oct. 1995.

Available: http:// www.zvne.fer.hr/ ~zmija/ resources/ science_resources/nn_for_optimization/index.html

[2] K. Fujimura, K. Obu-Cann, and H. Tokutaka, “Optimization of surface component mounting on the

printed circuit board using SOM-TSP method,” in Proc. 6th Int'l Conf. Neural Information Processing

(ICONIP’99), vol. 1, 1999, pp. 131–136.

[3] K. Fujimura, S. Fujiwaki, O.-C. Kwaw, and H. Tokutaka, “Optimization of electronic chip-mounting

machine using SOM-TSP method with 5 dimensional data,” in Proc. Int'l Conf. Info-tech and Info-net

(ICII’01), vol. 4, 2001, pp. 26–31.

[4] M. K. Mehmet Ali and F. Kamoun, “Neural networks for shortest tour computation and routing in

computer networks,” IEEE Trans. Neural Networks, vol. 4, no. 5, pp. 941–953, 1993.

[5] T. Onoyama, T. Maekawa, S. Kubota, Y. Taniguchi, and S. Tsuruta, “Intelligent evolutional algorithm

for distribution network optimization,” in Proc. Int'l Conf. Control Applications, vol. 2, 2002, pp. 802–

807.

[6] D. Banaszak, G.A. Dale, A.N. Watkins, and J.D. Jordan, “An optical technique for detecting fatigue

cracks in aerospace structures,” in Proc. 18th Int'l Cong. Instrumentation in Aerospace Simulation

Facilities (ICIASF), 1999, pp. 27/1–27/7.

[7] D. Barrel, J.-P. Perrin, E. Dombre, and A. Liengeois, “An evolutionary simulated annealing algorithm for

optimizing robotic task ordering,” IEEE Int'l Sym. Assembly and Task Planning (ISATP), 1999, pp. 157–

162.

[8] C.-H. Cheng, W.-K. Lee, and K.-F. Wong, “A genetic algorithm-based clustering approach for database

partitioning,” IEEE Trans. Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 32, no.

3, pp.:215–230, 2002.

[9] J. Gu and X. Huang, “Efficient local search with search space smoothing: a case study of the traveling

salesman problem (TSP),” IEEE Trans. Systems, Man, and Cybernetics, vol. 24, no. 5, pp. 728–735,

1994.

[10] F. Tian and L. Wang, “Chaotic simulated annealing with augmented Lagrange for solving combinatorial

optimization problems,” in Proc. 26th Annual Conf. of the IEEE Industrial Electronics Society

(IECON’00), vol. 4, 2000, pp. 2722–2725.

 26

[11] H.-D. Jin, K.-S. Leung, M.-L. Wong, and Z.-B. Xu, “An efficient self-organizing map designed by

genetic algorithms for the traveling salesman problem,” IEEE Trans. Systems, Man, and Cybernetics-Part

B: Cybernetics, vol. 33, no. 6, pp. 877–888, 2003.

[12] B. Fritzke and P. Wilke, “FLEXMAP-A neural network with linear time and space complexity for the

traveling salesman problem,” in Proc. Int'l Joint Conf. Neural Networks, pp. 929–934, 1991.

[13] L. I. Burke and P. Damany, “The guilty net for the traveling salesman problem,” Computers and

Operations Research, vol. 19, no. 3/4, pp. 255–266, 1992.

[14] K. S. Leung, H. D. Jin, and Z. B. Xu, “An expanding self-organizing neural network for the traveling

salesman problem,” Neurocomputing, vol. 62, pp. 267–292, 2004.

[15] H. Al-Mulhem and T. Al-Maghrabi, “Efficient convex-elastic net algorithm to solve the Euclidean

traveling salesman problem,” IEEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics, vol. 28, no. 4,

pp. 618–620, 1998.

[16] M. Budinich, “A self-organizing neural network for the traveling salesman problem that is competitive

with simulated annealing,” Neural Computation, vol. 8, no. 2, pp. 416–424, 1996.

[17] Y. Takahashi, “Mathematical improvement of the Hopfield model for feasible solution to the traveling

salesman problem by a synapse dynamical system,” IEEE Trans. Systems, Man, Cybernetics-Part B:

Cybernetics, vol. 28, no. 6, pp. 906–919, 1998.

[18] S. Abe and A. H. Gee, “Global convergence of the Hopfield neural network with nonzero diagonal

elements,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 1, pp.

39–45, 1995.

[19] J. B. Shakleford, “Neural data structures: Programming with neurons,” Hewlett-Packard Journal, pp.

69–78, 1989.

[20] S. Bhide, N. John, and M. R. Kabuka, “A real-time solution for the traveling salesman problem using a

Boolean neural network,” in Proc. Int’l Conf. Neural Networks (ICNN’93), vol. 2, 1993, pp. 1096–1103.

[21] Y. He and L. Wang, “Chaotic neural networks and their applications,” 3rd World Cong. Intelligent

Control and Automation, vol. 2, 2000, pp. 826–830.

[22] L. Jiao and L. Wang, “A novel genetic algorithm based on immunity,” IEEE Trans. Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 30, no. 5, pp. 552–561, 2000.

 27

[23] R. Baraglia, J. I. Hidalgo, and R. Perego, “A hybrid heuristic for the traveling salesman problem,” IEEE

Trans. Evolutionary Computation, vol. 5, no. 6, no. 613–622, 2001.

[24] D. B. Fogel, “Applying evolutionary programming to selected traveling salesman problems,”

Cybernetics and Systems, vol. 24, pp. 27–36, 1993.

[25] T. Stützle and M. Dorigo, “ACO algorithms for the traveling salesman problem,” In K. Miettinen, M.

Makela, P. Neittaanmaki, J. Periaux, editors, Evolutionary Algorithms in Engineering and Computer

Science, Wiley, 1999.

[26] M. Dorigo and L. M. Gambardella, “Ant colonies for the traveling salesman problem,” BioSystems, vol.

43, pp. 73–81, 1997.

[27] Z. He, C. Wei, B. Jin, W. Pei, and L. Yang, “A new population-based incremental learning method for

the traveling salesman problem,” in Proc. Cong. Evolutionary Computation, vol. 2, 1999, pp. 1152–1156.

[28] A. Misevičius, “Using iterated tabu search for the traveling salesman problem,” Informacinės

Technologijos ir Valdymas, vol. 3, no. 32, pp. 29–40, 2004.

[29] S. P. Coy, B. L. Golden, and G. C. Runger, E. A. Wasil, “See the forest before the trees: fine-tuned

learning and its application to the traveling salesman problem”, IEEE Trans. Systems, Man, and

Cybernetics-Part A: Systems and Humans, vol. 28, no. 4, pp. 454–464, 1998.

[30] S. Jung and B.-R. Moon, “Toward minimal restriction of genetic encoding and crossovers for the two-

dimensional Euclidean TSP,” IEEE Trans. Evolutionary Computing, vol. 6, no. 6, pp. 557–565, Dec.

2002.

[31] L. Ingber, B. Rosen, “Genetic algorithms and very fast simulated reannealing: a comparison,”

Mathematical and Computer Modeling, vol. 16, no. 11, pp. 87–100, 1992.

[32] K. Smith, “An argument for abandoning the traveling salesman problem as a neural network

benchmark”, IEEE Trans. Neural Networks, vol. 7, no. 6, pp. 1542–1544, 1996.

[33] B. W. Lee and B. J. Sheu, “Modified Hopfield neural networks for retrieving the optimal solution”,

IEEE Trans. Neural Networks, vol. 2, no. 1, pp. 137–142, 1991.

[34] E.M. Cochrane and J.E. Beasley, “The co-adaptive neural network approach to the Euclidean traveling

salesman problem,” Neural Networks, vol. 16, pp. 1499–1525, 2003.

 28

[35] M. Saadatmand-Tarzjan, M.-R. Akbarzadeh-T., M. Khademi, “A novel combinatorial constructive

neural network for the traveling salesman problem and shortest path problem with specified city number,”

Journal of Engineering Faculty of University of Tehran, vol. 39, no. 4, pp. 469-487, 2005.

[36] D.S. Johnson, L.A. McGeoch, “The traveling salesman problem: a case study in local optimization,” in

the Book Local Search in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra (eds.), John

Wiley and Sons, London, 1997, pp. 215-310.

Available: http://www.research.att.com/~dsj/papers/TSPchapter.pdf.

[37] E. Mérida-Casermeiro, G. Galán-Marín, and J. Muñoz-Peréz, “An efficient multivalued Hopfield

network for the traveling salesman problem,” Neural Processing Letters, vol. 14, pp. 203–214, 2001.

[38] G. Gutin, A. Yeo, and A. Zverovitch, “Chapter 1: Exponential neighborhoods and domination analysis

for the TSP,” In G. Gutin, A. Punnen, editors, The traveling salesman problems and its variations,

Kluwer Academic Publishers, 2002.

[39] O. Lahyani, E. Oertli, and H. Eberle, “Optimizing Drill Tapes for Printed Circuit Boards”, International

Workshop on Autonomic Communication (WAC’96), vol. 3, 1996.

[40] G. Laporte, “The traveling salesman problem: An overview of exact and approximate algorithms,” Eur.

J. Oper. Res., vol. 59, pp. 231–247, 1992.

[41] J.J. Dongarra, Performance of various computers using standard linear equations software. Available:

http://www.netlib.org/benchmark/performance.ps

[42] MATLAB Compiler Version 3: User’s Guide. MathWorks, 2002.

[43] G. Reinelt, “TSPLIB–A traveling salesman problem library,” ORSA J. Computing, vol. 3, no. 4, pp.

376–384, 1991.

[44] R. Baraglia, J.I. Hidalgo, and R. Perego, “A hybrid heuristic for the traveling salesman problem,” IEEE

Trans. Evolutionary Computation, vol. 5, no. 6, pp. 613–622, Dec. 2001.

[45] N. Aras, İ.K. Altınel, and J. Oommen, “A Kohonen-like decomposition method for the Euclidean

traveling salesman problem–KNIES_DECOMPOSE,” IEEE Trans. Neural Networks, vol. 14, no. 4, pp.

869–890, 2003.

[46] N. Aras, B. J. Oommen, İ.K. Altınel, “Kohonen network incorporating explicit statistics and its

application to the traveling salesman problem,” Neural Networks, vol. 12, no. 9, pp. 1273–1284, 1999.

 29

[47] İ.K. Altınel, N. Aras, and B. J. Oommen, “Fast, efficient and accurate solutions to the Hamiltonian path

problem using neural approaches,” Comput. Operations Res., vol. 27, pp. 461–494, 2000.

 30

List of Captions of Figures

Figure 1. Basic optimizer NN for a 3-city tour.

Figure 2. Constructive-optimizer NN (extended basic optimizer NN) for a 3-city tour among 6 cities.

Figure 3. Block diagram of CONN training algorithm.

Figure 4. CONN operation for solving a 6-city TSP: (a) the initial tour with m=5 cities, (b) tour improvement by CONN

in the optimizer phase, and (c) tour growing by CONN in the constructive phase.

Figure 5. The number of cities to be added in each constructive phase (λ) versus the number of cities (in the logarithmic

scale) for 21 benchmark TSPs from TSPLIB. The CPU time has been fitted by a cubic polynomial.

Figure 6. K/n ratio for 91 benchmark TSPs from TSPLIB.

Figure 7. CONN CPU time versus the number of cities for 91 benchmark TSPs from TSPLIB. The CPU time has been

fitted by a polynomial whose degree is less than 3 (2.7).

Figure 8. CONN percent difference versus the number of cities for 91 benchmark TSPs from TSPLIB.

Figure 9. Comparing CONN with SA1 for 64 benchmark TSPs from TSPLIB in terms of CPU time. The CPU time of

SA1 was scaled by 0.32 (see Table 3).

Figure 10. Comparing CONN with Budinich’s SOM and ESOM for 20 benchmark TSPs from TSPLIB in terms of CPU

time. The CPU time of Budinich’s SOM and ESOM was scaled by 0.48 (see Table 3).

Figure 11. Comparing CONN with Co-Adaptive Net for 20 benchmark TSPs from TSPLIB in terms of CPU time. The

CPU time of Co-Adaptive Net were scaled by 0.42 (see Table 3).

Figure 12. Comparing CONN with KNIES NNs including KD, KL, and KG for 18 benchmark TSPs from TSPLIB in

terms of CPU time. The CPU time of KNIES NNs was scaled by 0.25 (see Table 3).

 31

List of Captions of Tables

Table 1. BONN training algorithm.

Table 2. Computational complexity of CONN equations before and after efficient implementation.

Table 3. The scaling coefficients for adjusting the CPU time of CONN counterpart algorithms with respect to the

CONN CPU time.

Table 4. CONN solutions to 21 benchmark TSPs from TSPLIB for 5 different values of λ. Best results are indicated by

bold-faced text.

Table 5. CONN solutions to 91 benchmark TSPs from TSPLIB using three different algorithms for generating the initial

tours. Best results are indicated by bold-faced text. For each TSP, CONN chooses one of these algorithms based

on the number of cities (n). Final CONN solutions are indicated by gray background.

Table 6. Experimental results of CONN, 2-Opt heuristic, 4-Opt heuristic, SA1, and ITS for 10 benchmark TSPs from

TSPLIB. CONN is compared with these counterparts in terms of the average percent difference, average CPU

time and computational complexity. Best results are indicated by bold-faced text.

Table 7. Experimental results of CONN, Greedy-LK, MMAS, and NEA for 14 benchmark TSPs from TSPLIB. CONN

is compared with these counterparts in terms of the average percent difference, average CPU time and

computational complexity. Best results are indicated by bold-faced text.

Table 8. Comparing CONN and several well-known heuristics including nearest neighbor, greedy, Clarke-Wright, and

Christofides in terms of the computational complexity.

Table 9. Comparing CONN and its nine counterparts including SA2, KD, KL, KG, Budinich’s SOM, ESOM, eISOM,

Co-Adaptive Net, and MVHN for 37 benchmark TSPs from TSPLIB in terms of the solution quality and

computational complexity. Best results are indicated by bold-faced text.

 32

1
1x 1

2x 1
3x

2
1x 2

2x 2
3x

3t

4t
3
1x 3

2x 3
3x

4
1x 4

2x 4
3x

Layer eCompetitivTour

Layer eCompetitiv Link

Layer Link

LayerTour

 33

1. A valid tour satisfying (3) is selected as the initial tour, 0ψ , setting k=0.

2. Outputs of the first layer neurons are initialized using the initial tour as follows:
(18)mjk

jj ,,2,1,1 K== ψx

3. NN is iterated once.
4. If no neuron in the fourth layer wins, NN is converged and the training is over.
5. The winning city in the fourth layer,

optωc , is displaced from its current location to the new location specified by

the winning neuron output. In other words, if
optωc is placed in location a on the current tour:

opt

1
ωcx =a (19)

then, the new tour is configured as:
],,,,,,,,,,[11

1
1

1
1

1
111

2
1
1

1
44 maaxax

k

optopt
xxxxxxxxψ KKK +−+

+ =
ωω

 (20)

6. Set 1+= kk and repeat steps 2-5 until convergence.

 34

1
1x 1

3x

3t

4t
3
1x 3

2x 3
3x

4
1x 4

2x 4
3x

3
4x 3

5x 3
6x

4
4x 4

5x

2
3x2

2x2
1x

4
6x

QSet RSet
Layer

eCompetitiv
Tour

Layer
eCompetitiv

Link

Layer Link

LayerTour

Part veConstructiPartOptimizer

1
2x

 35

Initial tour
creation

 CONN
initialization

CONN proceeds
forward through the

optimizer part.

Is nm = or
γ−m

dividable by λ?

Has CONN
converged in
the optimizer

phase?

Updating the
current tour

CONN proceeds
forward through the

constructive part.

Adding the winning
city to the tour.

Transferring the
winning city from the

set Rk to the set Qk.

mm →+1

Is nm < ?

Stop

Start

No Yes

Yes No

No Yes

 36

After Efficient Implementation Before Efficient Implementation Equation Number
)(nO)(mnO 8
)(nO)(mnO 9

)(mno)(mnO 12
)(nO)(nO Other Equations

)(3no)(3nO Overall Computational Complexity

 37

(a) (b) (c)

3c

1c

2c

4c

6c

5c

3c

1c

2c

4c

6c

5c

3c

1c

2c

4c

6c

5c

 38

Scaling Coefficients
Counterpart Algorithm Processing System Prog.

Language AMD 1.4-GHz PC
3GL Prog. Lang.

AMD 1.4-GHz PC
MATLAB

2-Opt, 4-Opt, SA1, ITS [28] Pentium III 900-MHz PC PASCAL 0.32 >0.32
Greedy-LK [50] PentiumPro 200-MHz PC NA 0.07 >0.07
MMAS [25] Sun UltraSparc II Works. C++ 0.24 >0.24
NEA [47] Pentium III 866-MHz PC C++ 0.31 >0.31
KD, KL, KG [43] Pentium III 700-MHz PC FORTRAN 0.25 >0.25
eISOM, ESOM, Budinich’s SOM [11] Sun UltraSparc 5/270 Works. C++ 0.48 >0.48
Co-Adaptive Net [48] Silicon Graphic O2 Works. FORTRAN 0.42 >0.42

 39

[])5,20max(n≈λ [])10,10max(n≈λ [])20,5max(n≈λ [])40,3max(n≈λ [])80,1max(n≈λ

T γ δ % T γ δ % T γ δ % T γ δ % T γ δ %

Optimal
answer

TSP
name

0.06 20 7.1 0.08 10 6.0 0.08 5 6.0 0.08 3 6.0 0.09 1 6.0 7627 berlin52
0.20 20 2.6 0.21 10 2.6 0.22 5 2.6 0.22 3 2.6 0.27 1 2.6 21282 kroA100
0.35 40 4.2 0.41 20 4.2 0.44 10 4.2 0.58 5 4.2 0.53 3 4.3 29437 kroB200
0.70 64 8.4 0.75 32 8.0 0.88 16 7.5 0.89 8 7.3 1.2 4 7.1 42029 lin318
1.0 80 7.1 1.1 40 6.3 1.2 20 6.1 1.3 10 4.6 1.7 5 5.4 15281 rd400
1.7 110 13.4 1.8 55 12.1 2.0 27 12.6 2.4 13 11.9 3.1 6 12.3 202339 ali535
2.1 130 7.0 2.3 65 7.1 2.8 32 8.2 3.3 16 7.6 4.3 8 7.6 48912 d657
2.8 160 8.2 2.9 80 7.2 3.5 40 8.0 4.2 20 7.9 5.4 10 8.2 8806 rat783
3.9 200 7.2 4.6 100 6.9 5.1 50 6.9 6.5 25 6.7 8.9 12 6.7 259045 pr1002
5.6 230 8.9 6.2 115 8.5 7.0 57 8.9 8.9 28 8.4 12.1 14 9.1 56892 pcb1173
5.6 260 11.0 6.3 130 11.3 7.4 65 11.3 9.1 32 11.2 12 16 11.0 50801 d1291
7.1 290 6.9 7.6 145 6.4 9.1 72 6.4 12 36 6.4 16 18 6.4 152970 u1432
8.4 320 9.0 9.2 160 6.9 11 80 7.0 13 40 10.5 19 20 10.5 22249 fl1577
12 350 8.8 13 175 8.8 14 87 8.6 18 44 9.4 26 22 9.2 336556 vm1748
12 380 10.4 13 190 9.1 16 95 9.1 21 46 8.8 30 23 9.3 316536 rl1889
14 420 3.1 15 210 3.1 18 105 3.1 25 52 3.1 34 26 3.1 80450 d2103
34 480 7.5 38 240 7.4 46 120 7.6 63 60 7.7 99 30 8.4 378032 pr2392
32 610 7.3 35 305 7.4 41 152 7.4 59 71 7.7 370 35 7.8 137694 pcb3038
50 740 9.4 55 370 9.6 66 185 9.9 88 82 11.9 132 41 12 28772 fl3795
76 890 7.6 88 445 7.6 105 222 7.6 144 111 7.9 233 55 7.9 182566 fnl4461
154 1180 12.8 179 590 12.6 234 295 12.7 254 197 12.7 398 98 13.0 565530 rl5915
 8.0 7.6 7.7 7.8 8.0 Average

 40

 41

Hull Through Four Outermost Cities Convex Hull Cheapest Link

T (sec.) K β δ (%) T (sec.) K β γ δ (%) T (sec.) K β γ δ (%)
λ

Optimal
Solution n TSP

Name

0.01 12 2 0.0 0.01 11 2 5 0.0 0.01 12 2 4 0.0 10 3323 14 burma14
0.02 18 6 0.23 0.01 12 3 7 0.23 0.02 14 4 6 0.23 10 6859 16 ulysses16
0.03 18 5 3.07 — — — — — 0.02 14 4 7 0.0 10 2085 17 gr17
0.02 21 4 2.77 — — — — — 0.02 17 4 8 0.0 10 2707 21 gr21
0.03 26 8 0.0 0.03 20 5 7 0.0 0.03 23 9 8 0.0 10 7013 22 ulysses22
0.04 24 4 1.10 — — — — — 0.03 20 4 8 1.10 10 1272 24 gr24
0.04 28 6 2.35 — — — — — 0.03 23 5 8 0.0 10 937 26 fri26
0.04 31 6 0.87 0.03 28 6 7 0.87 0.03 27 6 8 0.87 10 1610 29 bayg29
0.04 32 7 0.69 0.03 28 6 7 0.69 0.03 26 5 8 0.69 10 2020 29 bays29
0.06 48 10 6.58 0.05 42 8 8 2.43 0.05 42 9 9 2.43 10 699 42 dantzig42
0.06 50 12 7.46 — — — — — 0.06 42 9 9 2.91 10 1273 42 swiss42
0.06 50 6 2.58 0.05 43 6 11 2.17 0.06 45 6 9 2.17 10 10628 48 att48
0.06 46 7 1.51 — — — — — 0.06 46 7 9 1.51 10 5046 48 gr48
0.07 55 11 2.16 — — — — — 0.07 50 11 9 2.16 10 11461 48 hk48
0.07 56 9 2.58 0.06 50 8 9 2.58 0.06 51 9 9 2.58 10 426 51 eil51
0.07 60 12 8.76 0.07 54 10 8 6.03 0.07 57 14 9 8.18 10 7542 52 berlin52
0.09 72 18 5.13 — — — — — 0.09 62 13 9 0.22 10 25395 58 brazil58
0.10 76 10 3.41 0.09 70 10 10 3.70 0.09 73 13 10 2.96 10 675 70 st70
0.12 91 19 5.02 0.11 81 15 10 5.02 0.10 81 15 10 5.02 10 538 76 eil76
0.11 84 12 4.34 0.10 80 11 7 4.90 0.11 80 14 10 4.34 10 108159 76 pr76
0.16 110 18 4.77 0.14 101 16 11 3.61 0.13 101 15 10 3.61 10 55209 96 gr96
0.16 114 19 0.50 0.14 103 18 14 0.50 0.14 105 17 11 0.33 10 1211 99 rat99
0.18 124 28 2.57 0.16 109 21 12 2.57 0.16 118 29 11 2.57 10 21282 100 kroA100
0.16 117 21 2.60 0.14 104 17 13 2.60 0.15 108 19 11 2.60 10 22141 100 kroB100
0.16 116 20 1.53 0.14 106 17 11 1.53 0.15 111 22 11 1.53 10 20749 100 kroC100
0.16 114 18 1.73 0.13 99 13 14 1.42 0.14 102 13 11 1.42 10 21294 100 kroD100
0.15 114 18 4.37 0.14 103 17 14 2.14 0.15 107 18 11 1.97 10 22068 100 kroE100
0.17 122 26 4.46 0.15 111 22 11 3.59 0.16 112 23 11 3.59 10 7910 100 rd100
0.17 118 21 4.61 0.14 106 15 10 5.88 0.15 109 19 11 5.09 11 629 101 eil101
0.17 121 20 0.38 0.15 109 17 13 0.38 0.15 112 18 11 0.38 14 14379 105 lin105
0.15 113 10 2.77 0.12 92 9 24 2.77 0.14 106 10 11 2.77 15 44303 107 pr107
0.20 135 19 4.84 0.18 124 16 12 5.68 0.19 128 19 11 3.39 22 6942 120 gr120
0.19 133 13 1.74 0.16 111 14 27 1.74 0.19 126 13 11 1.74 24 59030 124 pr124
0.21 144 21 5.07 0.21 140 23 10 2.45 0.20 139 23 11 2.45 25 118282 127 bier127
 3.02 (18) 2.52 (20) 2.08 (32) Average of the Above Solutions

0.22 147 21 4.66 0.21 141 21 10 6.01 0.24 142 24 12 4.88 26 6110 130 ch130
0.22 147 15 2.92 0.19 128 18 26 2.27 0.21 139 15 12 2.79 27 96772 136 pr136
0.24 161 28 8.07 0.21 147 18 8 4.69 0.22 149 24 12 5.67 28 69853 137 gr137
0.24 156 16 4.12 0.22 152 18 10 2.34 0.22 147 15 12 2.34 29 58537 144 pr144
0.26 168 22 5.35 0.24 156 21 15 3.29 0.25 161 23 12 5.50 30 6528 150 ch150
0.26 173 27 5.76 0.24 158 23 15 4.78 0.25 159 21 12 5.17 30 26524 150 kroA150
0.26 167 21 3.21 0.26 164 25 11 3.09 0.25 163 25 12 3.09 30 26130 150 kroB150
0.26 171 23 0.79 0.25 162 23 13 0.79 0.25 162 22 12 0.79 30 73682 152 pr152
0.32 200 29 1.48 — — — — — 0.30 183 21 13 1.07 31 21407 175 si175
0.34 212 21 5.64 0.32 195 17 17 5.64 0.32 198 17 14 5.64 31 2323 195 rat195
0.37 224 30 8.23 0.36 226 36 8 4.16 0.39 233 49 14 10.1 31 15780 198 d198
0.38 229 33 4.40 0.37 220 31 11 5.66 0.37 222 36 14 5.16 31 29368 200 kroA200
0.38 230 34 4.24 0.36 214 31 17 4.24 0.37 219 33 14 4.50 31 29437 200 kroB200
0.46 268 47 6.36 0.45 260 43 8 6.87 0.45 259 49 15 5.54 30 3916 225 tsp225
0.41 243 21 2.43 0.39 228 21 19 1.93 0.39 231 20 15 2.35 30 80369 226 pr226

 42

Hull Through Four Outermost Cities Convex Hull Cheapest Link

T (sec.) K β δ (%) T (sec.) K β γ δ (%) T (sec.) K β γ δ (%)
λ

Optimal
Solution n TSP

Name

0.56 400 40 4.02 0.54 288 40 16 3.58 0.57 295 47 16 3.58 28 49135 264 pr264
0.60 306 30 3.57 0.50 271 29 38 4.07 0.60 312 48 16 4.81 27 2579 279 a280
0.71 343 48 5.44 0.68 323 46 22 4.80 0.65 330 48 17 4.85 27 48191 299 pr299
1.19 477 81 6.22 1.12 461 75 14 6.37 1.15 465 85 20 5.77 26 15281 400 rd400
1.15 479 66 4.42 1.06 453 68 32 4.62 1.15 465 69 21 4.54 27 11861 417 fl417
1.23 505 70 7.30 1.20 499 73 13 6.03 1.20 489 71 21 6.24 28 107217 439 pr439
1.27 495 57 5.56 1.22 472 67 37 5.77 1.28 503 82 21 5.72 28 50778 442 pcb442
1.55 596 107 5.90 1.50 588 104 9 5.83 1.59 583 113 23 6.27 31 35002 493 d493
1.96 635 107 5.95 1.86 619 99 12 5.66 1.81 609 101 24 5.84 35 27686 532 att532
1.68 579 48 1.65 — — — — — 1.60 551 40 24 1.45 35 48450 535 si535
2.04 686 116 5.90 2.01 678 115 11 6.48 1.93 663 115 26 6.11 39 36905 574 u574
1.86 655 84 6.90 1.92 644 88 19 6.72 1.90 632 83 26 7.84 39 6773 575 rat575
2.43 739 89 4.34 2.10 671 72 55 4.13 2.21 714 88 28 4.41 49 34643 654 p654
2.53 783 130 7.94 2.45 764 117 10 7.58 2.40 756 127 28 7.74 50 48912 657 d657
2.94 843 123 7.89 2.78 820 121 25 6.97 3.65 825 131 30 7.61 60 41910 724 u724
3.42 897 118 8.12 3.18 860 97 20 7.76 3.20 884 133 32 7.59 70 8806 783 rat783

 5.12 (9) 4.90 (20) 5.00 (10) Average of the Above Solutions

5.16 1232 236 8.72 4.90 1200 216 16 8.84 4.83 1179 218 39 8.73 111 18660188 1000 dsj1000
4.38 1160 162 7.59 4.38 1146 167 23 6.97 4.37 1137 174 39 6.94 111 259045 1002 pr1002
5.09 1042 14 0.99 — — — — — 4.79 1006 14 40 0.91 117 92650 1032 si1032
4.99 1239 183 7.49 4.92 1207 171 24 7.72 5.04 1204 185 41 7.79 123 224094 1060 u1060
5.63 1213 133 9.26 5.33 1211 140 13 9.08 5.46 1195 153 42 9.41 128 239297 1084 vm1084
5.93 1361 192 9.23 5.91 1372 214 15 9.10 5.92 1333 205 45 8.90 147 56892 1173 pcb1173
6.45 1376 89 11.3 6.47 1372 94 13 11.1 6.60 1331 88 48 10.8 174 50801 1291 d1291
7.12 1422 122 13.8 6.76 1428 143 19 12.9 6.83 1393 138 49 12.6 177 252948 1304 rl1304
7.20 1474 155 10.9 7.20 1475 166 14 10.4 7.10 1434 160 49 9.6 181 270199 1323 rl1323
7.66 1591 216 7.12 8.02 1586 226 19 6.06 7.42 1552 224 51 6.72 194 56638 1379 nrw1379
7.11 1471 75 4.19 6.70 1446 78 32 3.89 6.8 1446 98 52 4.38 198 20127 1400 fl1400
7.26 1569 141 6.62 7.01 1549 128 11 6.56 7.12 1536 157 53 6.47 206 152970 1432 u1432
10.6 1750 177 8.76 8.89 1693 201 85 9.16 9.87 1662 142 57 9.65 240 22249 1577 fl1577
11.8 1876 225 7.72 11.4 1830 215 40 8.29 11.0 1775 180 60 8.28 258 62128 1655 d1655
12.4 1985 241 8.36 12.4 1965 243 26 8.55 14.0 1936 251 63 9.23 280 336556 1748 vm1748
11.2 1994 181 9.73 11.3 1967 181 31 9.04 10.8 1932 180 65 9.73 297 57201 1817 u1817
15.5 2042 157 10.3 12.4 2013 144 20 9.59 12.4 1983 161 67 10.4 314 316536 1889 rl1889
16.8 2293 194 2.67 16.3 2232 141 12 3.03 17.8 2225 196 74 3.10 365 80450 2103 d2103
15.5 2403 255 7.95 16.4 2328 270 94 8.50 14.9 2296 220 76 9.05 376 64253 2152 u2152
16.8 2498 183 3.55 16.2 2422 153 50 3.14 16.7 2420 182 81 3.08 426 234256 2319 u2319
20.0 2774 386 8.92 19.4 2712 368 48 9.11 20.2 2717 408 83 9.37 433 378032 2392 pr2392
33.2 3548 514 7.65 32.8 3534 506 10 7.30 34.4 3429 495 104 8.04 584 137694 3038 pcb3038
51.1 3948 157 9.36 53.4 3959 196 32 9.31 48.2 3855 188 128 9.66 752 28772 3795 fl3795
74.1 5178 721 7.44 73.5 5120 680 21 7.64 73.3 5008 696 149 7.94 894 182566 4461 fnl4461
137.5 6570 659 11.1 139.4 6489 588 14 12.8 143.1 6345 625 195 13.1 1183 565530 5915 rl5915
135.5 6566 636 13.2 139.9 6664 745 15 12.2 134.7 6428 690 196 13.1 1187 556045 5934 rl5934

 8.22 (10) 8.41 (8) 8.35 (8) Average of the Above Solutions
 5.22 (37) 5.22 (47) 4.87 (50) Total Average

4.72 Total Average for CONN

 43

 44

 45

 46

ITS SA1 4-Opt 2-Opt CONN

CPU
Time δ

CPU
Time δ

CPU
Time δ

CPU
Time δ

CPU
Time δ

Optimal
solution

TSP
name

0.3 0.0 4.2 0.0 15 3.0 0.2 4.5 0.1 0.33 1211 rat99

5.1 0.0 8.0 0.2 122 0.8 0.9 0.8 0.3 0.8 73682 pr152

3.5 0.0 9.9 0.0 288 0.2 1.2 0.5 0.3 1.1 21407 si175

48 0.0 12 0.2 544 3.4 1.6 7.5 0.3 5.6 2323 rat195

19 0.0 13 0.1 576 1.3 1.9 2.2 0.4 4.2 15780 d198

6.7 0.0 21 0.1 ― ― 5.1 4.9 0.5 3.6 49135 pr264

8.0 0.0 25 0.0 ― ― 6.1 6.7 0.5 4.1 2579 a280

179 0.2 70 0.5 ― ― 30 6.6 1.1 6.4 15281 rd400

163 0.4 80 0.6 ― ― 38 7.1 1.2 5.8 50778 pcb442

288 0.3 102 0.6 ― ― 54 5.6 1.2 6.0 35002 d493

 0.1 (3.8) 0.2 (3.8) 1.7 (2.4) 4.6 (3.8) 3.8 (3.8) Average)(CONNδδ

)(3nΩ)(3nΩ)(3nΩ)(2nΩ)(3no Comp. Complexity

† Solution qualities of 2-Opt, 4-Opt, SA1, and ITS were quoted from Ref. [28] while their CPU time was scaled by 0.32
(see Table 3).

 47

 48

NEA MMAS Greedy-LK CONN

CPU
Time δ CPU

Time δ CPU
Time δ CPU

Time δ
Optimal
solution

TSP
name

52 0.0 93 0.1 6.4 0.0 1.9 5.7 27686 att532

― ― ― ― 49 0.0 3.1 10.8 294358 gr666

― ― ― ― 32 0.0 3.2 7.8 8806 rat783

345 0.0 ― ― ― ― 5.2 8.7 18660188 dsj1000

― ― ― ― 78 0.0 4.4 7.6 259045 pr1002

― ― 619 0.3 ― ― 5.0 7.5 224094 u1060

― ― 773 0.1 ― ― 5.9 9.2 56892 pcb1173

― ― 455 0.0 ― ― 6.5 11.3 50801 d1291

― ― 720 0.3 ― ― 11 8.8 22249 fl1577

141 0.0 ― ― ― ― 17 2.7 80450 d2103

― ― ― ― 350 0.2 16 7.9 64253 u2152

538 0.0 ― ― ― ― 33 7.6 137694 pcb3038

― ― ― ― 944 0.1 51 9.4 38772 fl3795

2738 0.0 ― ― ― ― 74 7.4 4461 fnl4461

 0.0 (6.3) 0.2 (8.5) 0.1 (8.2) 8.0 Average)(CONNδδ

)(3nω)(3nω)(3nω)(3no Comp. Complexity

† Solution qualities of Greedy-LK, MMAS, and NEA were quoted from Refs. [50], [25], and [47], respectively, while
their CPU time was scaled by 0.07, 0.24, and 0.31, correspondingly (see Table 3).

 49

Computational Complexity Algorithm
)(3no CONN
)(2nO Nearest Neighbor

)log(2 nnO Greedy

)log(2 nnO Clarke-Wright
)(5.2nΩ Christofides

 50

M
V

H
N

e
tw

o-optim
al

C
o-A

daptive
N

et d

eISO
M

b

ESO
M

a, b

B
udinich’s
SO

M
a, b

K
G

c

K
L

c

K
D

c

SA
2 a, b

C
O

N
N

O
ptim

al
solution

TSP nam
e

7.0 2.9 2.6 2.1 3.1 2.9 2.9 3.5 2.3 2.6 426 eil51
7.8 1.7 ― 2.1 1.7 2.3 1.5 3.7 2.3 3.0 675 st70
9.4 4.4 ― 3.9 5.3 5.5 5.0 6.5 5.5 5.0 538 eil76
― ― 0.8 1.0 2.1 ― ― ― 4.1 3.6 55209 gr96
10.0 3.6 ― 2.0 3.2 2.6 2.1 4.9 3.3 3.6 7910 rd100
13.9 1.3 0.6 1.0 3.7 ― ― ― 5.9 2.6 21282 kroA100
10.1 3.8 3.6 3.4 5.2 5.6 4.7 6.8 5.7 5.1 629 eil101
8.3 1.1 ― 0.25 1.7 1.3 2.0 2.2 1.9 0.38 14379 lin105
6.1 4.4 ― 1.5 1.3 0.42 0.73 10.8 1.5 2.8 44303 pr107
6.1 2.9 ― 0.67 1.6 0.49 0.08 3.2 1.3 1.7 59030 pr124
9.1 3.0 ― 1.7 3.6 3.1 2.8 5.8 3.5 2.5 118282 bier127
9.9 4.7 ― 4.3 5.2 5.2 4.5 1.9 4.9 2.3 96772 pr136
― ― 3.2 4.3 8.6 ― ― ― 8.5 4.8 69853 gr137
― 3.1 1.8 2.0 4.4 ― ― ― 4.3 3.5 26524 kroA150
5.6 2.1 ― 0.89 2.0 1.3 0.97 3.2 2.6 0.79 73682 pr152
12.2 7.5 ― 7.13 11.5 11.9 12.2 8.4 13.3 5.6 2323 rat195
― 3.3 1.6 2.9 6.1 6.6 5.7 5.7 5.6 5.7 29368 kroA200
― 4.3 2.1 4.1 8.2 ― ― ― 7.6 7.3 42029 lin318
12.8 7.6 6.1 7.4 8.4 10.4 11.1 8.0 9.2 5.8 50778 pcb442
― 5.3 3.4 5.0 5.7 6.8 6.7 6.2 5.4 5.7 87550 att532
― 4.6 ― ― ― 5.6 ― 5.0 ― 4.1 34643 p654
― 6.6 ― ― ― 9.6 ― 9.1 ― 7.8 8806 rat783
― 5.3 4.8 6.4 8.8 7.6 ― 7.1 6.0 7.6 259045 pr1002
― 9.6 ― 9.9 11.4 ― ― 12.7 11.1 9.2 56892 pcb1173
― 12.0 ― ― ― ― ― 16.4 ― 11.3 50801 d1291
― 11.8 ― ― ― ― ― 13.8 ― 10.9 270191 rl1323
― 4.3 ― 4.1 5.6 ― ― 6.0 4.7 4.1 20127 fl1400
― 6.3 ― ― ― ― ― 9.0 ― 6.6 152970 u1432
― 14.4 ― ― ― ― ― 14.3 ― 8.8 22249 fl1577
― 10.1 ― 11.4 15.2 ― ― 12.3 13.2 7.7 62128 d1655
― 6.8 ― 7.3 10.2 ― ― 8.6 7.9 8.4 336556 vm1748
― 7.9 6.4 8.5 10.3 ― ― 11.5 8.2 8.9 378032 pr2392
― 8.9 ― ― ― ― ― 12.6 ― 7.6 137694 pcb3038
― 14.9 ― ― ― ― ― 15.6 ― 9.4 28772 fl3795
― 6.6 ― ― ― ― ― 16.3 ― 7.4 182566 fnl4461
― 14.8 ― ― ― ― ― 19.5 ― 11.1 565530 rl5915
― 14.0 ― ― ― ― ― 18.9 ― 13.2 556045 rl5934

9.2 (3.1) 6.5 (6.0) 3.1 (5.3) 4.0 (4.6) 5.9 (4.6) 5.0 (4.0) 4.2 (3.5) 9.0 (6.1) 5.8 (4.6) 5.9 Average)(CONNδδ

)(3nω)(3nO)(3nO)(3nO)(3nO)(3nO)(3nO)(3nO)(3nO)(3no Computational Complexity

† Solution qualities of the algorithms indicated by superscripts a, b, c, d and e are quoted from Refs. [14], [11], [43],
[48] and [52], respectively.

 51

 52

 53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

