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A Novel Evolutionary Approach for Optimizing  
Content-Based Image Indexing Algorithms 

 
 
 
 

Abstract 

Optimization of content-based image indexing and retrieval (CBIR) algorithms is a complicated and time-

consuming task since each time a parameter of the indexing algorithm is changed, all images in the database 

should be indexed again. In this paper, a novel evolutionary method called evolutionary group algorithm 

(EGA) is proposed for complicated time-consuming optimization problems such as finding optimal 

parameters of content-based image indexing algorithms. In the new evolutionary algorithm, the image 

database is partitioned into several smaller subsets and each subset is used by an updating process as training 

patterns for each chromosome during evolution. This is in contrast to genetic algorithms (GA) which use the 

whole database as training patterns for evolution. Additionally, for each chromosome, a parameter called age 

is defined that implies the progress of the updating process. Similarly, the genes of the proposed 

chromosomes are divided into two categories: evolutionary genes that participate to evolution and history 

genes that save previous states of the updating process. Furthermore, a new fitness function is defined which 

evaluates the fitness of the chromosomes of the current population with different ages in each generation. We 

used EGA to optimize the quantization thresholds of the wavelet correlogram algorithm for CBIR. The 

optimal quantization thresholds computed by EGA, improved significantly all the evaluation measures 

including average precision, average weighted precision, average recall, and average rank for the wavelet 

correlogram method. 

 

Index Terms 

Evolutionary Group Algorithm, Evolutionary Algorithms, Genetic Algorithms, Content-Based Image 

Indexing and Retrieval, Wavelet Correlogram, Global Optimization. 
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I. Introduction 

Digital image libraries and other multimedia databases have been dramatically expanded 

in recent years. Storage and retrieval of images in such libraries become a real demand in 

industrial, medical, and other applications [1]. Content-based image indexing and retrieval 

(CBIR) is considered as a solution. In such systems, in the indexing algorithm, some 

features are extracted from every picture and stored as an index vector [2]. Then, in the 

retrieval algorithm, every index is compared (using a similarity criterion) to find some 

similar pictures to the query image [3]. 

Various indexing algorithms based on different image features such as color [4-5], texture 

[6], and shape [7] have been developed. Among all these features, color is the most 

frequently used signature for indexing [8]. Color histogram [4] and its variations [9-11] 

were the first algorithms introduced in the pixel domain. Despite its efficiency and 

insensitivity to little changes of the view point, color histogram is unable to carry local 

spatial information of pixels. Therefore, in such systems, retrieved images may have many 

inaccuracies, especially in large image databases. For these reasons, two variations called 

image partitioning and regional color histogram were proposed to improve the 

effectiveness of such systems [6, 12-13]. Color correlogram is a different pixel domain 

approach which incorporates spatial information with color [5]. 

Shape-based indexing algorithms may be divided into two categories. In the first 

category, features such as edges [7] that reflect the shape of the objects in the image are 

used [14]. In the second category, each image is initially segmented to several regions 

(according to a similarity criterion) and then, the features of these regions are used to 

construct the image index [15]. 
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In the above algorithms, the feature vectors are constructed using spatial domain 

information. Another possibility is the use of transformed domain data to extract some 

higher-level features [16]. Wavelet based methods, which provide space-frequency 

decomposition of the image have been used [17-19]. Daubechies’ wavelets are the most 

frequently used in CBIR for their fast computational and regularity. In [16], Daubechies’ 

wavelets in three scales have been used to obtain the transformed data. Then, histograms of 

the wavelet coefficients in each sub-band have been computed and stored to construct the 

feature vector. In SIMPLIcity [17], the image is first classified into different semantic 

classes using a kind of texture classification algorithm. Then, Daubechies’ wavelets are 

used to extract feature vectors. In a different indexing algorithm, Wang et al. [20] used 

wavelet domain information to index images. Recently, a wavelet-based CBIR system 

called wavelet correlogram has been introduced by Abrishami Moghaddam et al. [18]. 

This system will be briefly reviewed in Section IV-A. 

 

A. CBIR Systems Enhancement 

CBIR systems differ from pattern classification methods such as face recognition (FR) 

and optical character recognition (OCR) since they are more user-dependent in retrieval 

phase [21]. In other words, CBIR systems should simulate the user idea about the 

similarity between images. From this view point, these algorithms may be considered as 

contextual methods whose operation may depend on the user. Therefore, the aim of 

enhancing the performance of a CBIR system is usually increasing the similarity between 

the CBIR and user retrieved images from an image database (imagebase), for all query 
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images. There are generally two ways to enhance the performance of CBIR systems: 

enhancing the i) retrieval and ii) indexing algorithms. 

 

 
Fig. 1. Block diagram of the retrieval algorithm enhancement process in a CBIR system. 

 

i) Retrieval Algorithm Enhancement: General block diagram of a retrieval algorithm 

enhancement process is illustrated in Fig. 1. Initially, all images of an imagebase are 

indexed and their indices are stored in a feature database (featurebase). Then, at each step 

of the enhancement process, similar images to each query are retrieved using the current 

retrieval algorithm parameters. Finally, the retrieval algorithm parameters are modified 

such that the similarity between the CBIR and user retrieved images ( ky  and kŷ  , 

respectively) for all queries is maximized. 

If only one query image ( II =k ) is used in the enhancement process, the retrieval 

algorithm parameters will be optimized to evaluate the similarity between that query image 

and all the images in the database. In this case, the block diagram of Fig. 1 corresponds to 

relevance feedback (RF) approach. RF is a general method to enhance retrieval results 

using user’s feedbacks [21-22]. For example, in the approach presented in [21], the user 

specifies the matched images among the CBIR-retrieved images for each query. The 

information provided by the user is used for training a classifier such as support vector 
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machines (SVM). The classification boundaries obtained by SVM are then used to 

distinguish between matched and non-matched images.  

 

 

Fig. 2. Block diagram of the indexing algorithm enhancement process in a CBIR system. 
 

ii) Indexing Algorithm Enhancement: Here, enhancing the indexing parameters only for 

one query image is not meaningful (Fig. 2). Accordingly, the aim of enhancement is global 

optimization of the indexing algorithm parameters.  

Optimization of the indexing algorithm is a more difficult task compared to the retrieval 

algorithm enhancement. Because each time the indexing algorithm parameters are 

modified, all images of the reference imagebase should be indexed again. Therefore, the 

above optimization process has a large computational cost, particularly for large 

imagebases. Actually, there is no published work focused on optimization of the indexing 

algorithm parameters. 

A number of researchers used a contextual texture classifier to overcome the above 

drawback [17, 23]. This classifier categorizes images into several contextual categories 

such as picture, painting, portrait, etc. In the indexing algorithm, considering the 

attachment category of each image, an appropriate index is constructed. Then, in the 

retrieval algorithm, this index is compared to the indices of images in the same category. 
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Although the above classifier may improve the retrieval algorithm performance, it has the 

following drawbacks: i) the contextual classifier should be trained, ii) any miss-

classification of the query image causes important inaccuracies in the retrieval algorithm 

results, iii) the indexing algorithm parameters for each category should be optimized to 

provide better performance. 

 

B. Optimization Methods 

Optimization methods may be divided into two categories: i) variational approaches 

such as least squares error, recursive least squares error, steepest descent, quasi-Newton 

approach, and Levenberg-Marquardt method [24-25]; and ii) global optimizing approaches 

such as simulated annealing [26], evolutionary algorithms (EA) [27-28], and ant colony 

optimization [29]. 

The variational approaches may converge to a local minimum of a cost function. In such 

approaches, in contrast to the global optimizers, the cost function usually should be convex 

and differentiable. Therefore, these approaches can not be used for parameter optimization 

of the indexing algorithms.  

Among global optimizers, evolutionary approaches such as genetic algorithms (GA) [27] 

seem to be more adapted to the indexing algorithm optimization problem. However, 

optimizing the indexing algorithm parameters by GA as well as other evolutionary 

optimizers is not a trivial task, because of their huge computational cost. For example, 

when GA are used, for evaluation of each chromosome, all images of the reference 

imagebase should be indexed again (see Section I-A). In other words, if indexing of all 
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images of the reference imagebase takes 20 minutes long and GA generate only 2000 

chromosomes during evolution, its entire computational time will be 667 hours. 

Researchers proposed a wide variety of approaches to improve the efficiency of 

evolutionary algorithms [27-28, 30-36]. Most of these algorithms try to reduce the number 

of generations, while preserving the optimization performance [30]. For example, Smith 

[31] proposed an algorithm in which the population size was adjusted as a function of 

selection error probability. Another example is GAVaPS [32], a genetic algorithm with 

variable population size. The age concept for a chromosome was introduced for the first 

time in this algorithm. Srinivas and Patnaik [33] added mutation and crossover 

probabilities to the bitstring of each chromosome. They adjusted these probabilities using 

the maximum and mean fitness in the population, and obtained more efficiency. Recently, 

elitism has been used to speed up the GA performance [34-35]. In elitism-based GA, a 

number of individuals in the current population survive to the next generation. GENITOR 

algorithm [36] proposed by Whitley generates only two offspring in each generation and 

replaces the worst two chromosomes of the population. Recently, Xu et al [37] proposed 

six efficient speed-up strategies to improve the convergence speed of GA. 

Obviously, for optimizing the indexing algorithm parameters, GA should obtain an 

acceptable enhanced solution by generating a limited number of chromosomes during 

evolution; otherwise the computational cost increases impractically. Among the above fast 

evolutionary algorithms, the elitism-based GA and GENITOR are more adapted to the 

above requirements. However, their computational cost is still a major problem. 

In this paper, a novel evolutionary method called evolutionary group algorithm (EGA) 

for time-consuming problems such as optimizing the parameters of image indexing 
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algorithms is proposed. Compared to the conventional GA, EGA has an important 

advantage: the evolutionary process in EGA is several times faster than GA. EGA uses 

dynamic chromosomes that can experience during evolution; while in GA, they are 

unchangeable members of a population. Therefore, EGA corresponds better to the new 

evolution theory proposed by Williams [38-39]. 

 

C. Evolutionary Group Algorithm 

In EGA, the imagebase is partitioned into several subsets and each subset is used by an 

updating process as training patterns for each chromosome during evolution. This is in 

contrast to GA which use the whole database as training patterns for evolution. 

Additionally, for each chromosome, a parameter called age is defined that implies the 

progress of the updating process. Similarly, the genes of the proposed chromosomes are 

divided into two categories: evolutionary genes that participate to evolution and history 

genes that save the previous states of the updating process. Furthermore, in each 

generation, a new fitness function evaluates the fitness of the chromosomes with different 

ages in the current population.  

We applied EGA for optimizing quantization thresholds of the wavelet correlogram 

CBIR algorithm [18, 40]. The optimal quantization thresholds computed by EGA, 

improved significantly all the evaluation measures including average precision, average 

weighted precision, average recall, and average rank for the wavelet correlogram method. 

 

D. Paper Outline 

The remainder of the paper is organized as follows: Section II presents the application of 

GA to optimize the indexing algorithm parameters. The proposed EGA is described in 
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Section III. In Section IV, EGA is used to optimize the quantization thresholds of the 

wavelet correlogram CBIR algorithm and the simulation results are given. Finally, we 

conclude and suggest future research in Section V. 

 

II. CBIR Optimization Using GA 

In order to illustrate the difference between the proposed EGA and typical GA, the 

application of GA to optimize the indexing algorithm parameters is described in this 

section. 

 

A. Reference Imagebase 

As stated in Subsection I-B, the aim of indexing parameters optimization (in a CBIR 

system) is maximizing the similarity between the CBIR and user retrieved images in a 

reference imagebase for all query images. In this paper, a subset of COREL database [17] 

is used as the reference imagebase (D). This imagebase consists of 10 image categories 

( 10=A ) as listed in Table I, and each category includes 100 images ( 100=C ), i.e. 

1000|| =D  where |.| returns the cardinality of a set.  

In Fig. 3, an image from each category is shown. For the above reference imagebase, the 

user-retrieved images ( ky ) for the query image kI  are defined as follows: 

(1){ })()(;||,...,2,1)Human( kiikk i IIDIDIy Ψ=Ψ∈===  

(2){ } ||,...,2,1,,...,2,1)( DI =∈Ψ kAk  

where, Ψ(I) returns the similarity category of image I, and ky  represents a set of the 

images kI that belong to the same similarity category. Obviously, we will have, Ck =y . 
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              Africans                              Beaches                                 Buildings                           Buses                               Dinosaurs 

     
              Elephants                             Flowers                                Horses                            Mountains                            Food 

Fig. 3. Some images from the reference imagebase (one image per category). 
 

B. Indexing Algorithm Optimization by GA 

In a typical GA, to optimize the indexing parameters ],...,,[ 110 −= NθθθΘ , chromosomes 

may be defined as follows: 

(3)MjNjjjj ,...,2,1],,...,,[ 1,1,0, == −θθθΘ  

where N and M are the number of genes (indexing parameters) and population size, 

respectively. Then, for each chromosome, the query results for all images in the reference 

imagebase are computed according to the following equations: 

(4)||,...,2,1,)Retrieval();(CBIRˆ DFΘIy === kj
kjk

j
k  

 (5)
⎭
⎬
⎫

⎩
⎨
⎧ <−∈== CRankp

mj
k

j
pp

j
k )(;||,...,2,1)Retrieval( FFDIDF  

(6)||,...,2,1),;(Indexing DΘIF == kjk
j

k  

where, j
kF  and j

kŷ  represent the feature vector of the query image kI  and the query results 

obtained by the indexing parameters of the j-th chromosome, respectively, and m⋅  is the 

Minkowski distance of rank m [41]. Obviously, better chromosomes give more similarity 

between the CBIR and user-retrieved images. Therefore, the evaluation function of GA 

may be defined as follows: 
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(7)∑∑∑
= = =

=
||

1 1 1
,, )ˆ,(

||2
1)(

D

D
Θ

k

C

p

C

q

j
pk

j
pkj yy

C
J δ  

(8)1)(0 ≤≤ jJ Θ  

where, j
pk ,y  indicates the p-th member from j

ky  and )(⋅δ  is the Kronecker delta function: 

(9)
⎩
⎨
⎧

≠
=

=
ba
ba

ba
0
1

),(δ  

This evaluation function is equivalent to the normalized recall measure [42]. Larger 

values of J mean more similarity between the CBIR and user-retrieved images. In other 

words, if the CBIR solutions completely match the user solutions, the evaluation function 

will result in 1 and if they are totally mismatched it will be 0. From (4)-(7), it is clear that 

any modification of the indexing algorithm parameters, requires reindexing of all images in 

the reference imagebase for each chromosome which means a very large computational 

cost. We propose EGA as a solution to overcome the above drawback. 

 

III. EGA Principles 

In EGA, the reference imagebase is partitioned into several subsets and the whole 

database is used only once. In each evolution step, only one subset is indexed using each 

chromosome in the population. Therefore, in EGA, the evolution proceeds during indexing 

the image subsets of the reference imagebase. This will reduce significantly the 

computational cost of EGA compared to GA. 

 

A. Reference Imagebase Partitioning 

All images of the reference imagebase are partitioned to L different subsets according to 

(10) and (11) such that each subset includes LC=η  images from each similarity category: 
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(10)Lkiki kLi
L

||,,2,1,1,,1,0,||),( DII D KK =−== +×  

(11)1,,1,0},||,,2,1{ ),( −=== Lik Lkii KK DID  

(12)LL |||| DD =  

where, ),( kiI  indicates the k-th image in the subset iD  and L|| D  is the total number of 

images in each subset. The following equations are simply concluded: 

(13)ηALi == |||| DD  
 

B. Proposed Chromosomes 

In EGA, the chromosomes are defined as follows: 

(14)Mjg jjjjj ,,2,1,}ˆ,,,{ hisevn K==′ JΘΘΘ  

where, jg , evn
jΘ , his

jΘ  and jĴ  represent the age gene, evolutionary genes, history genes, and 

evaluation genes of the j-th chromosome, respectively. Evolutionary genes supply 

inheritance characteristics like the chromosomes in a simple GA. The age is a new gene 

which enables the chromosome to treat time during evolution. The history and evaluation 

genes are complementary to the age since they enable the chromosome to treat changes of 

the environmental conditions as well as time during evolution. In other words, the 

proposed chromosome can obtain new experiences during evolution; and logically, it 

should be evaluated not only based on its evolutionary genes but also based on its 

experiences. 

i) Evolutionary Genes: As implied by their name, the evolutionary genes participate to 

evolution whose goal is their optimization. Indeed, evolutionary genes are the indexing 

parameters that should be optimized during evolution: 

(15)MjNjjjj ,...,2,1],,...,,[ 1,1,0,
evn == −θθθΘ  
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ii) Age Gene: For each chromosome, the age gene indicates the number of the image 

subsets that have already been indexed during evolution. Using the age gene jg , we may 

write: 

(16)Mjkgi Ljjki
j

ki ,...,2,1,||,...,2,1,1,...,1,0),;(Indexing evn
),(),( ==−== DΘIF  

where, j
ki ),(F  indicates the index vector of the k-th image from the i-th image subset that is 

computed by the indexing parameters of the j-th chromosome. The age of each 

chromosome is initially set to zero and obviously, it is always between 0 and L. 

iii) History Genes: For each chromosome, the history genes are the index vectors of the 

previously indexed images. Indeed, the history genes develop a local featurebase for each 

chromosome as follows (Fig. 4): 

(17)Mjj
g

j
g

jjjj
j LjjLL

,...,2,1],,,,,,,,,,[ )||,1()1,1()||,1()1,1()||,0()1,0(
his == −− DDD FFFFFFΘ KKKK  

During evolution, for each chromosome, the CBIR system retrieves the matched images 

using the above local featurebase. Therefore, for query image ),( kiI , we have: 

(18))g,Retrieval();(CBIRˆ ),(),(),( j
j

kijki
j

ki FΘIy =′=  

 

(19)Mjkgi

gRankqgpqpg

Lj

j
mj

ki
j

qpLjj
j

ki

,...,2,1,||,...,2,1,1,...,1,0

,)(;||,...,1,1,...,0),(),Retrieval( ),(),(),(

==−=
⎭
⎬
⎫

⎩
⎨
⎧ ×<−=−==

D

FFDF η  

where, η×jg  is the cardinality of each similarity category in the local featurebase (history 

genes) of the j-th chromosome. Similarly, for each chromosome, the user retrieves the 

matched images in the local imagebase as follows (Fig. 4): 

(20){ }
Mjkgi

qgpqpg

Lj

kiqpLjjki
j

ki

,...,2,1,||,...,2,1,1,...,1,0

,)()(;||,,1,1,...,0),();Human( ),(),(),(),(

==−=

Ψ=Ψ=−===

D

IIDIy K  

The evolutionary genes participate directly to the evolution process, while the history 

genes provide only the required memory information (index vectors of the previously 
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indexed images) of the CBIR system. As will be seen in the next subsection, this memory 

is used to compute the evaluation function for each chromosome. In other words, the 

evolutionary and history genes provide the necessary information respectively for indexing 

and retrieval algorithms. 

 

 

Fig. 4. Block diagram of the indexing and retrieval processes for each chromosome during evolution. 
 

iv) Evaluation Genes: For the j-th chromosome, the evaluation function is defined in the 

same way as in Section II-B: 

(21)Mj
g
L

C
gjJ

j L j jg

i k

g

p

g

q

j
qki

j
pki

j
j ,...,2,1,)ˆ,(

||2
1),(ˆ

1

0

||

1 1 1
),,(),,(

2

=×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Θ′ ∑ ∑ ∑ ∑

−

= = = =

D

yy
D

η η

δ  

where, j
pki ),,(y  indicates the p-th member of j

ki ),(y . During evolution of each chromosome, 

the evaluation function values are saved in the evaluation genes defined as follows: 

(22)],ˆ[ˆ
,gjj J=J    1,...,1,0,,...,2,1),,(ˆˆ

, −==Θ′= jgj ggMjgjJJ  

where, gjJ ,
ˆ  indicates the evaluation function value for the j-th chromosome at the age g. 

 

C. Mature and Immature Chromosomes 

Obviously, (21) evaluates the performance of the CBIR system, provided that the 

cardinalities of the local featurebases and imagebases are sufficiently large. For each 
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chromosome, the cardinality of the local featurebase is related to its age. Therefore, the 

evaluation computed by (22) will be valid if the chromosome’s age is larger than a 

threshold λ. We call this chromosome as mature and the chromosome whose age is smaller 

than λ as immature.  

 

D. Updating Chromosomes 

A chromosome updating process (CUP) is defined in EGA in order to update the genes 

by indexing the new images of the next image subsets. CUP proceeds as follows: 

1. S mature chromosomes, whose ages are smaller than L, are randomly selected from the 

current population as well as all immature chromosomes to make a set P. 

2. The history genes of these chromosomes are extended as follows: 

(23)],,,[: )|,|()1,(
hishis j

g
j
gjj Ljj

j DFFΘΘP K=∈∀  

3. The evaluation genes of there also extended as follows: 

(24))]1,(ˆ,ˆ[ˆ: +Θ′=∈∀ jjjj gJj JJP  

4. The age genes of these chromosomes are increased by one: 

(25)1: +=∈∀ jj ggj P  

Therefore, the age gene indicates the progress of the updating process. In each stage of 

CUP, all immature chromosomes are kept in the population and are updated until they 

become mature and generate offspring. 

 

E.  Fitness Function 

In typical GA, the fitness function is defined as a function of evaluation values for all 

chromosomes [43]. This simple definition is no more useful in EGA, since the 
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chromosomes in the population have different ages and are not in the same conditions for 

being comparable. Generally, comparing the evaluation values of the chromosomes with 

various ages is not valid for the following reasons: 

1. Chromosomes in different ages have local feature and image-bases with different 

sizes. Consequently, their retrieval results are not comparable. 

2. According to (18)-(20), the retrieval results of the chromosomes with various ages 

have different dimensions. 

3. Older chromosomes are more valuable than younger ones, since they have been 

kept in the group for a longer duration and competed more with other chromosomes 

during evolution. 

In the proposed fitness function, the chromosomes are first classified into same-age 

classes. Then, the probability of selecting each class is computed. Finally, the probability 

of selecting each chromosome as parent within each same-age class is computed. 

 

Mathematical Discussion: The same-age class jQ  containing the chromosomes with age 

j is defined as follows: 

(26){ } β,,2,1,;,...,2,1 K===′= jjgMk kkj ΘQ  

We also have: 

(27)U
β

1=
=

j jQQ  

(28)φ=ji QQ I  

where, Q contains all chromosomes and β is the age of the oldest chromosome in the 

current population. In other words, β represents the number of same-age classes. 
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Furthermore, a set jΓ  including the chromosomes in the current group with the ages equal 

to or smaller than j is defined as: 

(29)
⎪⎩

⎪
⎨
⎧

=

=
= =

0,

,,2,1,
1

j

jj
i i

j
φ

βKU Q
Γ  

Using (28) and (29), the probability of selecting a chromosome from the set jΓ  is 

computed as: 

(30)β,,2,1,)()( 1 K==∑ =
jPP j

i ij QΓ . 

where P(Qi) is the probability of selecting a chromosome from the set Qi. Then, we have: 

(31)β,,2,1,)(1)(
1

K=−= ∑ =
jPP j

i ij QΓ  

where, Γ  indicates the complement set of Γ . Suppose that j is the age of the k-th 

chromosome. Then, its probability for selection is defined using Bayes law as follows: 

(32))(ˆ
ˆ

)()(),()(
,

,
j

ji

jk
jjkjkkjk P

J
J

PPPP
ji

QQQΘQΘΘQΘ
QΘ∑ ∈′

=′=′=′⇒∈′  

Then, 

(33)∑ ∈′
′=

jk
jkj PP

QΘ
QΘQ ),()(  

Moreover, the conditional probability of selecting the same-age class jQ , knowing that the 

selected chromosome’s age is equal to or greater than j, is defined as follows: 

(34)
∑
∑

−∉′

∈′
− =

1
,

,
1 ˆ

ˆ
)(

ji

ji

ji

ji
jj J

J
P

ΓΘ

QΘΓQ  

The numerator of the above equation is the total evaluation value of the chromosomes with 

the age j, while its denominator is the total evaluation value of the chromosomes with the 

age equal to or greater than j. Using (31), (34) and Bayes law we may write: 



 20

⇒==⇒⊂ −−−− )()(),()( 1111 jjjjjjjj PPPP ΓQΓΓQQΓQ  

(35)( )
∑
∑

∑
−∉′

∈′−
=

−=
1

,

,1
1 ˆ

ˆ
)(1)(

ji

ji

ji

jij
i ij J

J
PP

ΓΘ

QΘQQ  

Finally, using (32) and (35), we have: 

(36)( )
∑∑

−∉′

−
=

−=′
1

,

,1
1 ˆ

ˆ
)(1)(

ji
ji

jkj
i ik J

J
PP

ΓΘ

QΘ  

The last equation computes the fitness (selection probability) of the k-th chromosome with 

age j.  

Fitness Computation Algorithm: The immature chromosomes can not be used as parents 

to generate new offspring during evolution for their imprecise evaluations. Therefore, their 

fitness should always set to zero until they become mature. The proposed algorithm for 

computing the chromosomes’ fitness (the fitness algorithm) is summarized as follows: 

1. k is set equal to the threshold of puberty λ. Also, the fitness of all immature 

chromosomes is set to zero: 

(37)1,,1,0,0)(: −==′∈′∀ λKkP jkj ΘQΘ . 

2. The fitness of all chromosomes that belong to the same-age class kQ  is computed 

using (36). 

3. The total fitness of the same-age class kQ  is computed by (33). 

4. k=k+1, 

5. Steps 2-4 are repeated until the fitness of all chromosomes is computed (k = β). 

Example: We give an example to illustrate how the proposed fitness computation 

algorithm works. Suppose that the current population includes 6 chromosomes with the 

following evaluation values: 
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58.065.075.0:ˆ
55.060.065.0:ˆ

65.090.0:ˆ
70.075.0:ˆ

50.0:ˆ
80.0:ˆ

6

5

4

3

2

1

J

J

J

J

J

J

 

Therefore, the same-age classes are defined as },{},,{},,{ 653432211 ΘΘQΘΘQΘΘQ ′′=′′=′′= . 

The fitness of the above classes and their chromosomes are computed by the fitness 

algorithm as follows: 
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Fig. 5. EGA flowchart. 

 

F. Generation Model 

Since chromosomes in EGA can experience during evolution, the conventional 

generation models are no more useful. Instead, one may use the GENITOR method [36] as 

generation model for EGA.  

 

G. EGA Flowchart 

The EGA flowchart is shown in Fig. 5. This evolutionary algorithm initially generates a 

random population. The chromosomes of the current population are then updated by CUP 

and the process is repeated until there are at least two mature chromosomes. In the next 

stage, based on the fitness of chromosomes, two mature individuals are selected from the 

current population as parents by a selection operator. Two offspring are then generated by 

the parents using the crossover and mutation operators. Finally, the new population is 
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generated by replacing two chromosomes that have the smallest fitness by the new 

offspring. The above procedure is repeated until a stop criterion is satisfied.  

Since in each generation, the elite chromosomes are kept in the population, according to 

the Rudolph theory [44], the proposed evolutionary group converges eventually to the 

global optimum after a sufficient number of generations. In EGA, the selection, crossover, 

and mutation operators and the stop criterion can be determined according to the 

application requirements.  

 

H.   EGA Computational Volume 

Suppose that u and v are the computational volumes (the number of basic operations) for 

indexing and computing the recall measure for all images in the reference imagebase, 

respectively: 

(38)
⎪⎩

⎪
⎨
⎧

=

=

vJT

uT

j

j

)]([

)];(Indexing[

Θ

ΘD
 

where, )( ⋅T  returns the computational volume. In CBIR systems, when the reference 

imagebase is sufficiently large, we have vuff . Hence, we may write: 

(39)1, ffααvu=  

The computational volumes of the selection, crossover, and mutation operators are 

negligible compared to the indexing and retrieval algorithms.  

Suppose that in elitism-base GA, m individuals ( Mm < ) from the current population 

survive to the next population in each generation. Therefore, the computational volume of 

elitism-based GA, during k generations, is given by: 

( ) ⇒++−=+−−++= )()())(1)(()()],,([ vummMkvukmMvuMmMkGAT Elitism  
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(40)[ ] [ ]mmMkumMkGAT Elitism +−⎟
⎠
⎞

⎜
⎝
⎛ += )(11),,(

α
 

In particular, GENITOR can be actually considered as an elitism-based genetic algorithm 

with m=M-2. Thus, we have: 

(41)[ ] [ ]2211),( −+⎟
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Similarly, simple GA are elitism-base GA with m=0. Thus, their computational volume is 

given by: 

(42)kMuMkGAT Simple ×⎟
⎠
⎞

⎜
⎝
⎛ +=

α
11)],([  

On the other hand, the computational volume of the indexing algorithm in EGA is 

proportional to the number of images to be indexed. Hence, we have: 

(43)[ ] MjLk
L
uT jk ,,2,1,1,...,1,0,);(Indexing evn K=−==ΘD  

The following equation can be easily derived from (7), (21), (38) and (39): 
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α
ugJT j ≤Θ′≤ )],(ˆ[0  

Therefore, the computational volume of the evaluation function for a chromosome varies 

during evolution according to the following sequence: 

uu
L

u
L ααα
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The mathematical expectation of the above sequence may be considered as an upper band 

for the expectation of the computational volume of the evaluation function: 
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If L is large enough (L>20), the above equation may be simplified as: 

(47)[ ]( ) ugJTEL j α4
1),(ˆ020 ≤Θ′≤⇒>  

For large number of generations (k→∞), the above expectation can be used as an upper 

band of the average computational volume of the evaluation function for each chromosome 

in each step of CUP during evolution. 

In EGA, the immature chromosomes should be kept in the population during λ 

generations until they become mature. Therefore, the EGA computational volume after k 

generations (k→∞) is computed using (47), as follows: 
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Using (40) and (49), the relative computational volume of elitism-based GA with respect to 

EGA is obtained by: 
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In other words, in EGA, the evolution proceeds 
λ

ξ
2

)()(
+

−=
S

mMLmElitism  times faster than in 

elitism-based GA with Lffα . Similarly, the relative computational volume of GENITOR 

and simple GA with respect to EGA are obtained by: 
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GENITOR is considered as a fast generation model; because its computational volume is 

2/)( mM −  and 2/M  times smaller than the elitism-based and simple GA, respectively. 

According to (52), EGA computational volume is 
⎟
⎟
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+

+

+ α

α
λ 41

11

2
2

LS
L  times smaller than 

GENITOR. 

 

I.   EGA and Evolution Theory 

According to the new evolution theory, called adaptation and natural selection proposed 

by G. Williams in 1966 [38], everything in the nature is only caused by natural selection in 

the population. EGA corresponds better to this theory since in EGA; the chromosomes can 

experience new conditions during evolution. Moreover, in each generation, there is a 

competition among the chromosomes of the current population in which the best 

chromosomes win according to their current and previous performances. Elimination of a 

chromosome (death) in EGA is the result of harmful effects of the genes which might 

previously have dominant advantages. On the other hand, a chromosome, that previously 

had poor performance, may have more chance for survival in the current group due to its 
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current advantages. This behavior of EGA is in accordance with the pleiotropy [39], while 

it is not included in conventional GA. 

 

IV. Experimental Results 

Although EGA has been presented in the context of CBIR, its development is not 

dependent on this context. In other words, CBIR is a good example for indicating the 

limitations of the evolutionary algorithms like GA for solving optimization problems 

involved with large databases. Therefore, EGA is an efficient algorithm potentially 

applicable to problems such as feature extraction in FR and handwritten recognition [45-

46], CBIR [18], data mining [47], and medical applications [48] where large databases 

should be processed. Wavelet correlogram is a state-of-the-art wavelet-based approach for 

CBIR [18, 49]. This image indexing retrieval algorithm and its variations [40] 

demonstrated high performance compared to other CBIR algorithms such as SIMPLIcity 

[17]. This section illustrates the application of EGA to optimize the quantization thresholds 

of the wavelet correlogram algorithm as an essential and time-consuming task. 

EGA can be used to optimize other conventional CBIR systems in the same manner. For 

example, it can be used to optimize the color quantization thresholds in color correlogram 

[5], coherency and centrality thresholds in CCV [50], and the quantization thresholds of 

wavelet coefficients in the wavelet histogram algorithm [51]. 

 

A.   Wavelet Correlogram 

The block diagram of the wavelet correlogram indexing algorithm is shown in Fig. 6. As 

illustrated, the wavelet coefficients of each image are first computed in three consecutive 
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scales and then quantized by quantization thresholds shown in Fig. 7. In the next stage, the 

autocorrelogram [5] of the wavelet coefficients in each scale is computed using only LH 

and HL matrices. The resultant autocorrelogram is finally used for the construction of the 

image feature vector. As illustrated in Fig. 7, a simple procedure has been used for 

determining the quantization thresholds in the original work [40]. Here, EGA was used to 

optimize these thresholds. 

 
Fig. 6. Block diagram of the wavelet correlogram indexing algorithm [49]. 

 

B.   Optimizing Quantization Thresholds Using EGA  

To optimize the quantization thresholds of the wavelet correlogram indexing algorithm, 

the reference imagebase should be partitioned into L subsets. On the one hand, a large L 

reduces the computational volume according to (50)-(53). On the other hand, for a normal 

evolution progress, each subset should contain the same number of images from each 

category. Consequently, the possible values of L are between 1 and C=100. Obviously, 

selecting L=100 provides the fastest evolution progress. In contrary, the best optimization 

performance may be resulted with L=1 in which EGA solution and computational volume 

are the same as GENITOR. In these experiments, L=100 was selected for obtaining the 

minimum evolution time. Evolutionary genes of each chromosome are corresponded to the 

quantization thresholds as indicated in Fig. 8. 
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Fig. 7. Original quantization thresholds of the wavelet correlogram algorithm [18]. 

 

 
Fig. 8. Quantization thresholds introduced by chromosome i. 

 

According to (50)-(53), the value of λ should be selected as small as possible to obtain the 

smallest computational cost. However, as illustrated in Fig. 9, the evaluation values of 

chromosomes decrease very fast during the first 5 generations and its variations become 

slower thereafter. Consequently, in order to suppress the harmful effects of the initial 

variations caused by small cardinality of the local featurebase (see Subsection III-C), only 

the chromosomes older than 5=λ  are considered as mature and participate to generation. 

In this application of EGA, the evolutionary genes of only one chromosome was 

corresponded to the quantization thresholds appeared in Fig. 7; and for other chromosomes 

of the initial population, they were randomly generated (seeding method [52]). The 

population size and the number of mature chromosomes in CUP were set to M=150 and 
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S=0.2×M=30, respectively. Moreover, we used the tournament selection operator [53] in 

which the tournament size was set to 7M , one-point mathematical crossover operator 

[54], and typical mutation operator in which the mutation probability was set to 01.0=mP  

[43]. The parameter α was experimentally estimated as α=180. Consequently, using (50), 

(52) and (53), the relative computational volumes of Elitism-based GA, GENITOR, and 

simple GA with respect to EGA were:  

(54)mmm Elitism 52.2378)(2.2330 −≤≤− ξ  

(55)0.5)148(4.4 ≤=≤ ElitismGenitor ξξ  

(56)378)0(330 ≤=≤ ElitismSimple ξξ  

 

 
Fig. 9. Variations of the evaluation function for an EGA chromosome in different ages. 

 

 
Fig. 10. Optimal quantization thresholds computed by EGA. 
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That means, the EGA computational volume was at least 4.4, 330-2.2m, and 330 times 

smaller than GENITOR, the elitism-based, and simple GA, respectively. 

 

C. Simulation Results 

All the simulations in this section were performed on a Pentium IV 2.8 GHz system under 

Matlab environment. We used EGA in order to optimize the wavelet correlogram 

quantization thresholds as stated in the previous subsection. Significant improvements 

were resulted by the algorithm evolution during 1000 generations. 

Fig. 9 shows the variations of the evaluation function for the optimal chromosome 

obtained by EGA. As illustrated, the best performance was achieved by the oldest 

chromosomes with the age 100 in the final population. The optimal quantization thresholds 

corresponding to the best chromosome are indicated in Fig. 10. 

Fig. 11 shows the histogram of chromosomes’ ages in the final EGA population. The 

distribution of chromosomes in terms of their age is as follows: 4% immature (younger 

than 5), 20% young (with the age between 5 and 35), 70% middle-aged (with the age 

between 35 and 80), and 6% old (older than 80). Therefore, a reasonable age distribution 

was observed in the final population. The middle-aged chromosomes, with majority in 

each population, are well-behaved ones which have obtained sufficient experience and can 

compete with the older chromosomes. The young chromosomes are the offspring of the 

older ones and are considered as the investment of the population for next generations. 

The above optimization algorithm took about 107 hours (equivalent to 4.5 days) long. 

According to Equations (50), (52), and (53), a similar optimization process with the same 

number of generations (k=1000 generations) takes 471, 28248, and 35310 hours 
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(equivalent to 19.6 days, 3.22 years and 4.03 years) for GENITOR, elitism-based GA (with 

m=0.20×M), and simple GA, respectively. 

 

 
Fig. 11. The histogram of chromosomes’ ages in the final population. 

 

The fitness probability variations during evolution for the best and worst chromosomes in 

the population are shown in Fig. 12. As illustrated, the fitness probabilities of the 

chromosomes were considerably different in the first generations. However, during 

evolution, the poor chromosomes were replaced by better offspring and consequently, the 

difference between the above fitness probabilities decreased. 

Tables I and II compares the performance of the wavelet correlogram CBIR with optimal 

and original quantization thresholds (Figs. 10 and 7, respectively) in terms of different 

evaluation measures including average and standard deviation (STD) of precision (P), 

weighted precision (Q), recall (R) and rank (C) [8, 17]. The above comparison is further 

illustrated in Fig. 13. For the query image kI , the precision is defined as follows: 

 (57){ })()(,);,(||,,2,11);,( kjkjk nRankj
n

nP IIΘIIDΘI Ψ=Ψ<== K  
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Fig. 12. Fitness variations of the best and worst chrosmosmes during EGA evolution. 

 

where, n indicates the number of retrieved images and the function ),;( ΘII kjRank  returns 

the rank of image Ij (for the query image Ik) among all images of D when the indexing 

algorithm parameters are initialized by Θ. In the same manner, the weighted precision, 

recall, and rank are defined according to (58-60), respectively: 
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The average and STD of precision for the i-th similarity category of the reference 

imagebase are given by (61) and (62), respectively: 
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Finally, the total average and STD of precision for the whole reference imagebase are 

computed by (63) and (64), respectively: 
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Table I. Evaluation of the wavelet correlogram with  
original quantization thresholds, setting n=10. 

stdC  aveC  stdR (%) aveR (%) stdP  (%) aveP (%) stdP  (%) aveP  (%) Category  

83 304 12.3 28.9 23.8 68.0 27.7 56.7 Africans 1 
131 345 16.7 27.9 24.0 63.0 28.5 49.9 Beaches 2 
142 314 12.9 29.4 19.5 60.1 22.4 46.9 Buildings 3 
71 110 16.6 63.4 18.4 88.2 22.7 83.8 Buses 4 
69 438 10.2 25.2 19.8 84.5 26.6 74.9 Dinosaurs 5 
48 256 8.2 28.3 18.1 63.4 19.3 48.5 Elephants 6 
81 116 19.9 66.0 18.4 89.5 23.2 84.8 Flowers 7 
63 268 10.6 29.9 21.4 81.1 27.0 68.9 Horses 8 
72 345 8.3 22.1 20.3 54.9 19.8 39.9 Mountains 9 
51 249 10.9 31.0 23.0 60.9 26.6 48.8 Food 10 

129 275 19.9 35.2 24.1 71.4 29.0 60.3 Total  
 

Table II. Evaluation of the wavelet correlogram with  
EGA-optimized quantization thresholds, setting n=10. 

stdC  aveC  stdR (%) aveR (%) stdP  (%) aveP (%) stdP  (%) aveP  (%) Category  

78 282 12.7 31.1 25.0 68.2 29.2 57.7 Africans 1 
131 335 16.5 28.6 23.4 61.9 28.2 49.3 Beaches 2 
141 308 12.1 30.5 20.6 63.2 23.7 50.9 Buildings 3 
79 108 16.4 64.0 15.3 91.2 20.5 87.1 Buses 4 
91 410 10.6 28.8 22.0 82.8 28.5 74.6 Dinosaurs 5 
44 235 8.4 30.7 17.5 70.7 20.9 55.7 Elephants 6 
82 125 19.9 65.3 19.4 88.3 24.3 84.3 Flowers 7 
99 264 13.9 39.9 19.5 85.9 23.1 78.9 Horses 8 
79 324 9.7 25.1 21.2 60.0 23.7 47.2 Mountains 9 
57 236 14.3 36.4 26.0 67.5 31.8 57.1 Food 10 

127 263 19.6 38.0 
23.9 74.0 29.4 64.3 Total  
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The average and STD of the other evaluation measures are also defined in the same 

manner.  

As can be observed, the optimal quantization thresholds improved all the evaluation 

measures of the wavelet correlogram algorithm. In order to verify the significance of the 

improvements provided by EGA optimized quantization thresholds, we applied the 

hypothesis testing. This test confirmed that the average precision and recall were improved 
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with statistically significance level ρ=0.01. It also demonstrated that the average weighted 

precision and rank were improved with statistically significance level ρ=0.05. 

Therefore, EGA was successful to optimize effectively the indexing parameters (the 

quantization thresholds) of the wavelet correlogram in a shorter computational time 

compared to the conventional evolutionary optimizers such as GA. 

  
                                                        (a)                                                                                                        (b) 

  
                                                        (c)                                                                                                        (d) 
Fig. 13. Evaluation results of the wavelet correlogram algorithm with EGA-optimized quantization thresholds 

compared to the original quantization thresholds in terms of different evaluation measures including (a) 

average precision, (b) average weighted precision, (c) average recall, and (d) average rank. 

 

In Fig. 14, the retrieval results of the wavelet correlogram algorithm with the optimal 

quantization thresholds (computed by EGA) for 4 query images are shown. The precision 
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of the algorithm, for each query image, is appeared at the right-hand side of the graphical 

user interface. 

 

V.   Conclusion 

In this paper, a novel evolutionary method called evolutionary group algorithm was 

proposed for solving time-consuming optimization problems involved with large 

databases.  

The database was partitioned into several subsets and each subset was used by an 

updating process as training patterns for each chromosome during evolution by EGA. 

Additionally, for each chromosome, an age parameter was defined for indicating the 

progress of the updating process. Two types of genes including evolutionary and history 

genes were defined for the proposed chromosomes. Evolutionary genes were able to 

participate to evolution, and history genes were aimed to save the previous states of the 

updating process. Furthermore, in each generation, a new fitness function was defined to 

evaluate the fitness of the chromosomes with different ages in the population. 

The novel algorithm was used for optimizing the quantization thresholds of the wavelet 

correlogram method for CBIR. The optimal parameters, obtained by EGA in a reasonable 

computational time, improved significantly the performance of the wavelet correlogram 

algorithm for CBIR. 

Although the proposed evolutionary algorithm is developed in the context of CBIR, it can 

be used in other applications in which large databases should be processed. We expect our 

developments to have application in other evolutionary algorithms as well. How this can be 

achieved is an open problem and further research is necessary to this end.  
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Fig. 14. Retrieval results of the wavelet correlogram image indexing and retrieval algorithm with the EGA-optimized 
quantization thresolds for four  different query images. The precision of the algorithm is appeared at the right-hand side of the 
graphical user interface. 
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