
 1

A Novel Evolutionary Approach for Optimizing
Content-Based Image Indexing Algorithms

M. Saadatmand-Tarzjan
Electrical Engineering Department, Tarbiat Modares University,

Nasr Bridge P.O. Box 14155-111, Tehran, Iran
saadatmand@kiaeee.org

H. Abrishami Moghaddam*
Electrical Engineering Department, K.N. Toosi University of Technology,

Seyed Khandan P.O. Box 16315-1355, Tehran, Iran
moghadam@saba.kntu.ac.ir

*Corresponding Author

 2

Corresponding Author

 Hamid Abrishami Moghaddam (Ph.D.)

 Electrical Engineering Department

 K. N. Toosi University of Technology

 Seyed Khandan

 P.O. Box 16315-1355

 Tehran, Iran

 Tel: +98 21 88461025

 Fax: +98 21 88462066

 E-mail: moghadam@saba.kntu.ac.ir

 3

A Novel Evolutionary Approach for Optimizing
Content-Based Image Indexing Algorithms

Abstract

Optimization of content-based image indexing and retrieval (CBIR) algorithms is a complicated and time-

consuming task since each time a parameter of the indexing algorithm is changed, all images in the database

should be indexed again. In this paper, a novel evolutionary method called evolutionary group algorithm

(EGA) is proposed for complicated time-consuming optimization problems such as finding optimal

parameters of content-based image indexing algorithms. In the new evolutionary algorithm, the image

database is partitioned into several smaller subsets and each subset is used by an updating process as training

patterns for each chromosome during evolution. This is in contrast to genetic algorithms (GA) which use the

whole database as training patterns for evolution. Additionally, for each chromosome, a parameter called age

is defined that implies the progress of the updating process. Similarly, the genes of the proposed

chromosomes are divided into two categories: evolutionary genes that participate to evolution and history

genes that save previous states of the updating process. Furthermore, a new fitness function is defined which

evaluates the fitness of the chromosomes of the current population with different ages in each generation. We

used EGA to optimize the quantization thresholds of the wavelet correlogram algorithm for CBIR. The

optimal quantization thresholds computed by EGA, improved significantly all the evaluation measures

including average precision, average weighted precision, average recall, and average rank for the wavelet

correlogram method.

Index Terms

Evolutionary Group Algorithm, Evolutionary Algorithms, Genetic Algorithms, Content-Based Image

Indexing and Retrieval, Wavelet Correlogram, Global Optimization.

 4

I. Introduction

Digital image libraries and other multimedia databases have been dramatically expanded

in recent years. Storage and retrieval of images in such libraries become a real demand in

industrial, medical, and other applications [1]. Content-based image indexing and retrieval

(CBIR) is considered as a solution. In such systems, in the indexing algorithm, some

features are extracted from every picture and stored as an index vector [2]. Then, in the

retrieval algorithm, every index is compared (using a similarity criterion) to find some

similar pictures to the query image [3].

Various indexing algorithms based on different image features such as color [4-5], texture

[6], and shape [7] have been developed. Among all these features, color is the most

frequently used signature for indexing [8]. Color histogram [4] and its variations [9-11]

were the first algorithms introduced in the pixel domain. Despite its efficiency and

insensitivity to little changes of the view point, color histogram is unable to carry local

spatial information of pixels. Therefore, in such systems, retrieved images may have many

inaccuracies, especially in large image databases. For these reasons, two variations called

image partitioning and regional color histogram were proposed to improve the

effectiveness of such systems [6, 12-13]. Color correlogram is a different pixel domain

approach which incorporates spatial information with color [5].

Shape-based indexing algorithms may be divided into two categories. In the first

category, features such as edges [7] that reflect the shape of the objects in the image are

used [14]. In the second category, each image is initially segmented to several regions

(according to a similarity criterion) and then, the features of these regions are used to

construct the image index [15].

 5

In the above algorithms, the feature vectors are constructed using spatial domain

information. Another possibility is the use of transformed domain data to extract some

higher-level features [16]. Wavelet based methods, which provide space-frequency

decomposition of the image have been used [17-19]. Daubechies’ wavelets are the most

frequently used in CBIR for their fast computational and regularity. In [16], Daubechies’

wavelets in three scales have been used to obtain the transformed data. Then, histograms of

the wavelet coefficients in each sub-band have been computed and stored to construct the

feature vector. In SIMPLIcity [17], the image is first classified into different semantic

classes using a kind of texture classification algorithm. Then, Daubechies’ wavelets are

used to extract feature vectors. In a different indexing algorithm, Wang et al. [20] used

wavelet domain information to index images. Recently, a wavelet-based CBIR system

called wavelet correlogram has been introduced by Abrishami Moghaddam et al. [18].

This system will be briefly reviewed in Section IV-A.

A. CBIR Systems Enhancement

CBIR systems differ from pattern classification methods such as face recognition (FR)

and optical character recognition (OCR) since they are more user-dependent in retrieval

phase [21]. In other words, CBIR systems should simulate the user idea about the

similarity between images. From this view point, these algorithms may be considered as

contextual methods whose operation may depend on the user. Therefore, the aim of

enhancing the performance of a CBIR system is usually increasing the similarity between

the CBIR and user retrieved images from an image database (imagebase), for all query

 6

images. There are generally two ways to enhance the performance of CBIR systems:

enhancing the i) retrieval and ii) indexing algorithms.

Fig. 1. Block diagram of the retrieval algorithm enhancement process in a CBIR system.

i) Retrieval Algorithm Enhancement: General block diagram of a retrieval algorithm

enhancement process is illustrated in Fig. 1. Initially, all images of an imagebase are

indexed and their indices are stored in a feature database (featurebase). Then, at each step

of the enhancement process, similar images to each query are retrieved using the current

retrieval algorithm parameters. Finally, the retrieval algorithm parameters are modified

such that the similarity between the CBIR and user retrieved images (ky and kŷ ,

respectively) for all queries is maximized.

If only one query image (II =k) is used in the enhancement process, the retrieval

algorithm parameters will be optimized to evaluate the similarity between that query image

and all the images in the database. In this case, the block diagram of Fig. 1 corresponds to

relevance feedback (RF) approach. RF is a general method to enhance retrieval results

using user’s feedbacks [21-22]. For example, in the approach presented in [21], the user

specifies the matched images among the CBIR-retrieved images for each query. The

information provided by the user is used for training a classifier such as support vector

 7

machines (SVM). The classification boundaries obtained by SVM are then used to

distinguish between matched and non-matched images.

Fig. 2. Block diagram of the indexing algorithm enhancement process in a CBIR system.

ii) Indexing Algorithm Enhancement: Here, enhancing the indexing parameters only for

one query image is not meaningful (Fig. 2). Accordingly, the aim of enhancement is global

optimization of the indexing algorithm parameters.

Optimization of the indexing algorithm is a more difficult task compared to the retrieval

algorithm enhancement. Because each time the indexing algorithm parameters are

modified, all images of the reference imagebase should be indexed again. Therefore, the

above optimization process has a large computational cost, particularly for large

imagebases. Actually, there is no published work focused on optimization of the indexing

algorithm parameters.

A number of researchers used a contextual texture classifier to overcome the above

drawback [17, 23]. This classifier categorizes images into several contextual categories

such as picture, painting, portrait, etc. In the indexing algorithm, considering the

attachment category of each image, an appropriate index is constructed. Then, in the

retrieval algorithm, this index is compared to the indices of images in the same category.

 8

Although the above classifier may improve the retrieval algorithm performance, it has the

following drawbacks: i) the contextual classifier should be trained, ii) any miss-

classification of the query image causes important inaccuracies in the retrieval algorithm

results, iii) the indexing algorithm parameters for each category should be optimized to

provide better performance.

B. Optimization Methods

Optimization methods may be divided into two categories: i) variational approaches

such as least squares error, recursive least squares error, steepest descent, quasi-Newton

approach, and Levenberg-Marquardt method [24-25]; and ii) global optimizing approaches

such as simulated annealing [26], evolutionary algorithms (EA) [27-28], and ant colony

optimization [29].

The variational approaches may converge to a local minimum of a cost function. In such

approaches, in contrast to the global optimizers, the cost function usually should be convex

and differentiable. Therefore, these approaches can not be used for parameter optimization

of the indexing algorithms.

Among global optimizers, evolutionary approaches such as genetic algorithms (GA) [27]

seem to be more adapted to the indexing algorithm optimization problem. However,

optimizing the indexing algorithm parameters by GA as well as other evolutionary

optimizers is not a trivial task, because of their huge computational cost. For example,

when GA are used, for evaluation of each chromosome, all images of the reference

imagebase should be indexed again (see Section I-A). In other words, if indexing of all

 9

images of the reference imagebase takes 20 minutes long and GA generate only 2000

chromosomes during evolution, its entire computational time will be 667 hours.

Researchers proposed a wide variety of approaches to improve the efficiency of

evolutionary algorithms [27-28, 30-36]. Most of these algorithms try to reduce the number

of generations, while preserving the optimization performance [30]. For example, Smith

[31] proposed an algorithm in which the population size was adjusted as a function of

selection error probability. Another example is GAVaPS [32], a genetic algorithm with

variable population size. The age concept for a chromosome was introduced for the first

time in this algorithm. Srinivas and Patnaik [33] added mutation and crossover

probabilities to the bitstring of each chromosome. They adjusted these probabilities using

the maximum and mean fitness in the population, and obtained more efficiency. Recently,

elitism has been used to speed up the GA performance [34-35]. In elitism-based GA, a

number of individuals in the current population survive to the next generation. GENITOR

algorithm [36] proposed by Whitley generates only two offspring in each generation and

replaces the worst two chromosomes of the population. Recently, Xu et al [37] proposed

six efficient speed-up strategies to improve the convergence speed of GA.

Obviously, for optimizing the indexing algorithm parameters, GA should obtain an

acceptable enhanced solution by generating a limited number of chromosomes during

evolution; otherwise the computational cost increases impractically. Among the above fast

evolutionary algorithms, the elitism-based GA and GENITOR are more adapted to the

above requirements. However, their computational cost is still a major problem.

In this paper, a novel evolutionary method called evolutionary group algorithm (EGA)

for time-consuming problems such as optimizing the parameters of image indexing

 10

algorithms is proposed. Compared to the conventional GA, EGA has an important

advantage: the evolutionary process in EGA is several times faster than GA. EGA uses

dynamic chromosomes that can experience during evolution; while in GA, they are

unchangeable members of a population. Therefore, EGA corresponds better to the new

evolution theory proposed by Williams [38-39].

C. Evolutionary Group Algorithm

In EGA, the imagebase is partitioned into several subsets and each subset is used by an

updating process as training patterns for each chromosome during evolution. This is in

contrast to GA which use the whole database as training patterns for evolution.

Additionally, for each chromosome, a parameter called age is defined that implies the

progress of the updating process. Similarly, the genes of the proposed chromosomes are

divided into two categories: evolutionary genes that participate to evolution and history

genes that save the previous states of the updating process. Furthermore, in each

generation, a new fitness function evaluates the fitness of the chromosomes with different

ages in the current population.

We applied EGA for optimizing quantization thresholds of the wavelet correlogram

CBIR algorithm [18, 40]. The optimal quantization thresholds computed by EGA,

improved significantly all the evaluation measures including average precision, average

weighted precision, average recall, and average rank for the wavelet correlogram method.

D. Paper Outline

The remainder of the paper is organized as follows: Section II presents the application of

GA to optimize the indexing algorithm parameters. The proposed EGA is described in

 11

Section III. In Section IV, EGA is used to optimize the quantization thresholds of the

wavelet correlogram CBIR algorithm and the simulation results are given. Finally, we

conclude and suggest future research in Section V.

II. CBIR Optimization Using GA

In order to illustrate the difference between the proposed EGA and typical GA, the

application of GA to optimize the indexing algorithm parameters is described in this

section.

A. Reference Imagebase

As stated in Subsection I-B, the aim of indexing parameters optimization (in a CBIR

system) is maximizing the similarity between the CBIR and user retrieved images in a

reference imagebase for all query images. In this paper, a subset of COREL database [17]

is used as the reference imagebase (D). This imagebase consists of 10 image categories

(10=A) as listed in Table I, and each category includes 100 images (100=C), i.e.

1000|| =D where |.| returns the cardinality of a set.

In Fig. 3, an image from each category is shown. For the above reference imagebase, the

user-retrieved images (ky) for the query image kI are defined as follows:

(1){ })()(;||,...,2,1)Human(kiikk i IIDIDIy Ψ=Ψ∈===

(2){ } ||,...,2,1,,...,2,1)(DI =∈Ψ kAk

where, Ψ(I) returns the similarity category of image I, and ky represents a set of the

images kI that belong to the same similarity category. Obviously, we will have, Ck =y .

 12

 Africans Beaches Buildings Buses Dinosaurs

 Elephants Flowers Horses Mountains Food

Fig. 3. Some images from the reference imagebase (one image per category).

B. Indexing Algorithm Optimization by GA

In a typical GA, to optimize the indexing parameters],...,,[110 −= NθθθΘ , chromosomes

may be defined as follows:

(3)MjNjjjj ,...,2,1],,...,,[1,1,0, == −θθθΘ

where N and M are the number of genes (indexing parameters) and population size,

respectively. Then, for each chromosome, the query results for all images in the reference

imagebase are computed according to the following equations:

(4)||,...,2,1,)Retrieval();(CBIRˆ DFΘIy === kj
kjk

j
k

 (5)
⎭
⎬
⎫

⎩
⎨
⎧ <−∈== CRankp

mj
k

j
pp

j
k)(;||,...,2,1)Retrieval(FFDIDF

(6)||,...,2,1),;(Indexing DΘIF == kjk
j

k

where, j
kF and j

kŷ represent the feature vector of the query image kI and the query results

obtained by the indexing parameters of the j-th chromosome, respectively, and m⋅ is the

Minkowski distance of rank m [41]. Obviously, better chromosomes give more similarity

between the CBIR and user-retrieved images. Therefore, the evaluation function of GA

may be defined as follows:

 13

(7)∑∑∑
= = =

=
||

1 1 1
,,)ˆ,(

||2
1)(

D

D
Θ

k

C

p

C

q

j
pk

j
pkj yy

C
J δ

(8)1)(0 ≤≤ jJ Θ

where, j
pk ,y indicates the p-th member from j

ky and)(⋅δ is the Kronecker delta function:

(9)
⎩
⎨
⎧

≠
=

=
ba
ba

ba
0
1

),(δ

This evaluation function is equivalent to the normalized recall measure [42]. Larger

values of J mean more similarity between the CBIR and user-retrieved images. In other

words, if the CBIR solutions completely match the user solutions, the evaluation function

will result in 1 and if they are totally mismatched it will be 0. From (4)-(7), it is clear that

any modification of the indexing algorithm parameters, requires reindexing of all images in

the reference imagebase for each chromosome which means a very large computational

cost. We propose EGA as a solution to overcome the above drawback.

III. EGA Principles

In EGA, the reference imagebase is partitioned into several subsets and the whole

database is used only once. In each evolution step, only one subset is indexed using each

chromosome in the population. Therefore, in EGA, the evolution proceeds during indexing

the image subsets of the reference imagebase. This will reduce significantly the

computational cost of EGA compared to GA.

A. Reference Imagebase Partitioning

All images of the reference imagebase are partitioned to L different subsets according to

(10) and (11) such that each subset includes LC=η images from each similarity category:

 14

(10)Lkiki kLi
L

||,,2,1,1,,1,0,||),(DII D KK =−== +×

(11)1,,1,0},||,,2,1{),(−=== Lik Lkii KK DID

(12)LL |||| DD =

where,),(kiI indicates the k-th image in the subset iD and L|| D is the total number of

images in each subset. The following equations are simply concluded:

(13)ηALi == |||| DD

B. Proposed Chromosomes

In EGA, the chromosomes are defined as follows:

(14)Mjg jjjjj ,,2,1,}ˆ,,,{ hisevn K==′ JΘΘΘ

where, jg , evn
jΘ , his

jΘ and jĴ represent the age gene, evolutionary genes, history genes, and

evaluation genes of the j-th chromosome, respectively. Evolutionary genes supply

inheritance characteristics like the chromosomes in a simple GA. The age is a new gene

which enables the chromosome to treat time during evolution. The history and evaluation

genes are complementary to the age since they enable the chromosome to treat changes of

the environmental conditions as well as time during evolution. In other words, the

proposed chromosome can obtain new experiences during evolution; and logically, it

should be evaluated not only based on its evolutionary genes but also based on its

experiences.

i) Evolutionary Genes: As implied by their name, the evolutionary genes participate to

evolution whose goal is their optimization. Indeed, evolutionary genes are the indexing

parameters that should be optimized during evolution:

(15)MjNjjjj ,...,2,1],,...,,[1,1,0,
evn == −θθθΘ

 15

ii) Age Gene: For each chromosome, the age gene indicates the number of the image

subsets that have already been indexed during evolution. Using the age gene jg , we may

write:

(16)Mjkgi Ljjki
j

ki ,...,2,1,||,...,2,1,1,...,1,0),;(Indexing evn
),(),(==−== DΘIF

where, j
ki),(F indicates the index vector of the k-th image from the i-th image subset that is

computed by the indexing parameters of the j-th chromosome. The age of each

chromosome is initially set to zero and obviously, it is always between 0 and L.

iii) History Genes: For each chromosome, the history genes are the index vectors of the

previously indexed images. Indeed, the history genes develop a local featurebase for each

chromosome as follows (Fig. 4):

(17)Mjj
g

j
g

jjjj
j LjjLL

,...,2,1],,,,,,,,,,[)||,1()1,1()||,1()1,1()||,0()1,0(
his == −− DDD FFFFFFΘ KKKK

During evolution, for each chromosome, the CBIR system retrieves the matched images

using the above local featurebase. Therefore, for query image),(kiI , we have:

(18))g,Retrieval();(CBIRˆ),(),(),(j
j

kijki
j

ki FΘIy =′=

(19)Mjkgi

gRankqgpqpg

Lj

j
mj

ki
j

qpLjj
j

ki

,...,2,1,||,...,2,1,1,...,1,0

,)(;||,...,1,1,...,0),(),Retrieval(),(),(),(

==−=
⎭
⎬
⎫

⎩
⎨
⎧ ×<−=−==

D

FFDF η

where, η×jg is the cardinality of each similarity category in the local featurebase (history

genes) of the j-th chromosome. Similarly, for each chromosome, the user retrieves the

matched images in the local imagebase as follows (Fig. 4):

(20){ }
Mjkgi

qgpqpg

Lj

kiqpLjjki
j

ki

,...,2,1,||,...,2,1,1,...,1,0

,)()(;||,,1,1,...,0),();Human(),(),(),(),(

==−=

Ψ=Ψ=−===

D

IIDIy K

The evolutionary genes participate directly to the evolution process, while the history

genes provide only the required memory information (index vectors of the previously

 16

indexed images) of the CBIR system. As will be seen in the next subsection, this memory

is used to compute the evaluation function for each chromosome. In other words, the

evolutionary and history genes provide the necessary information respectively for indexing

and retrieval algorithms.

Fig. 4. Block diagram of the indexing and retrieval processes for each chromosome during evolution.

iv) Evaluation Genes: For the j-th chromosome, the evaluation function is defined in the

same way as in Section II-B:

(21)Mj
g
L

C
gjJ

j L j jg

i k

g

p

g

q

j
qki

j
pki

j
j ,...,2,1,)ˆ,(

||2
1),(ˆ

1

0

||

1 1 1
),,(),,(

2

=×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Θ′ ∑ ∑ ∑ ∑

−

= = = =

D

yy
D

η η

δ

where, j
pki),,(y indicates the p-th member of j

ki),(y . During evolution of each chromosome,

the evaluation function values are saved in the evaluation genes defined as follows:

(22)],ˆ[ˆ
,gjj J=J 1,...,1,0,,...,2,1),,(ˆˆ

, −==Θ′= jgj ggMjgjJJ

where, gjJ ,
ˆ indicates the evaluation function value for the j-th chromosome at the age g.

C. Mature and Immature Chromosomes

Obviously, (21) evaluates the performance of the CBIR system, provided that the

cardinalities of the local featurebases and imagebases are sufficiently large. For each

 17

chromosome, the cardinality of the local featurebase is related to its age. Therefore, the

evaluation computed by (22) will be valid if the chromosome’s age is larger than a

threshold λ. We call this chromosome as mature and the chromosome whose age is smaller

than λ as immature.

D. Updating Chromosomes

A chromosome updating process (CUP) is defined in EGA in order to update the genes

by indexing the new images of the next image subsets. CUP proceeds as follows:

1. S mature chromosomes, whose ages are smaller than L, are randomly selected from the

current population as well as all immature chromosomes to make a set P.

2. The history genes of these chromosomes are extended as follows:

(23)],,,[:)|,|()1,(
hishis j

g
j
gjj Ljj

j DFFΘΘP K=∈∀

3. The evaluation genes of there also extended as follows:

(24))]1,(ˆ,ˆ[ˆ: +Θ′=∈∀ jjjj gJj JJP

4. The age genes of these chromosomes are increased by one:

(25)1: +=∈∀ jj ggj P

Therefore, the age gene indicates the progress of the updating process. In each stage of

CUP, all immature chromosomes are kept in the population and are updated until they

become mature and generate offspring.

E. Fitness Function

In typical GA, the fitness function is defined as a function of evaluation values for all

chromosomes [43]. This simple definition is no more useful in EGA, since the

 18

chromosomes in the population have different ages and are not in the same conditions for

being comparable. Generally, comparing the evaluation values of the chromosomes with

various ages is not valid for the following reasons:

1. Chromosomes in different ages have local feature and image-bases with different

sizes. Consequently, their retrieval results are not comparable.

2. According to (18)-(20), the retrieval results of the chromosomes with various ages

have different dimensions.

3. Older chromosomes are more valuable than younger ones, since they have been

kept in the group for a longer duration and competed more with other chromosomes

during evolution.

In the proposed fitness function, the chromosomes are first classified into same-age

classes. Then, the probability of selecting each class is computed. Finally, the probability

of selecting each chromosome as parent within each same-age class is computed.

Mathematical Discussion: The same-age class jQ containing the chromosomes with age

j is defined as follows:

(26){ } β,,2,1,;,...,2,1 K===′= jjgMk kkj ΘQ

We also have:

(27)U
β

1=
=

j jQQ

(28)φ=ji QQ I

where, Q contains all chromosomes and β is the age of the oldest chromosome in the

current population. In other words, β represents the number of same-age classes.

 19

Furthermore, a set jΓ including the chromosomes in the current group with the ages equal

to or smaller than j is defined as:

(29)
⎪⎩

⎪
⎨
⎧

=

=
= =

0,

,,2,1,
1

j

jj
i i

j
φ

βKU Q
Γ

Using (28) and (29), the probability of selecting a chromosome from the set jΓ is

computed as:

(30)β,,2,1,)()(1 K==∑ =
jPP j

i ij QΓ .

where P(Qi) is the probability of selecting a chromosome from the set Qi. Then, we have:

(31)β,,2,1,)(1)(
1

K=−= ∑ =
jPP j

i ij QΓ

where, Γ indicates the complement set of Γ . Suppose that j is the age of the k-th

chromosome. Then, its probability for selection is defined using Bayes law as follows:

(32))(ˆ
ˆ

)()(),()(
,

,
j

ji

jk
jjkjkkjk P

J
J

PPPP
ji

QQQΘQΘΘQΘ
QΘ∑ ∈′

=′=′=′⇒∈′

Then,

(33)∑ ∈′
′=

jk
jkj PP

QΘ
QΘQ),()(

Moreover, the conditional probability of selecting the same-age class jQ , knowing that the

selected chromosome’s age is equal to or greater than j, is defined as follows:

(34)
∑
∑

−∉′

∈′
− =

1
,

,
1 ˆ

ˆ
)(

ji

ji

ji

ji
jj J

J
P

ΓΘ

QΘΓQ

The numerator of the above equation is the total evaluation value of the chromosomes with

the age j, while its denominator is the total evaluation value of the chromosomes with the

age equal to or greater than j. Using (31), (34) and Bayes law we may write:

 20

⇒==⇒⊂ −−−−)()(),()(1111 jjjjjjjj PPPP ΓQΓΓQQΓQ

(35)()
∑
∑

∑
−∉′

∈′−
=

−=
1

,

,1
1 ˆ

ˆ
)(1)(

ji

ji

ji

jij
i ij J

J
PP

ΓΘ

QΘQQ

Finally, using (32) and (35), we have:

(36)()
∑∑

−∉′

−
=

−=′
1

,

,1
1 ˆ

ˆ
)(1)(

ji
ji

jkj
i ik J

J
PP

ΓΘ

QΘ

The last equation computes the fitness (selection probability) of the k-th chromosome with

age j.

Fitness Computation Algorithm: The immature chromosomes can not be used as parents

to generate new offspring during evolution for their imprecise evaluations. Therefore, their

fitness should always set to zero until they become mature. The proposed algorithm for

computing the chromosomes’ fitness (the fitness algorithm) is summarized as follows:

1. k is set equal to the threshold of puberty λ. Also, the fitness of all immature

chromosomes is set to zero:

(37)1,,1,0,0)(: −==′∈′∀ λKkP jkj ΘQΘ .

2. The fitness of all chromosomes that belong to the same-age class kQ is computed

using (36).

3. The total fitness of the same-age class kQ is computed by (33).

4. k=k+1,

5. Steps 2-4 are repeated until the fitness of all chromosomes is computed (k = β).

Example: We give an example to illustrate how the proposed fitness computation

algorithm works. Suppose that the current population includes 6 chromosomes with the

following evaluation values:

 21

58.065.075.0:ˆ
55.060.065.0:ˆ

65.090.0:ˆ
70.075.0:ˆ

50.0:ˆ
80.0:ˆ

6

5

4

3

2

1

J

J

J

J

J

J

Therefore, the same-age classes are defined as },{},,{},,{ 653432211 ΘΘQΘΘQΘΘQ ′′=′′=′′= .

The fitness of the above classes and their chromosomes are computed by the fitness

algorithm as follows:

Step 1:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=′+′=

=
+++++

=′

=
+++++

=′

2988.0)()()(

1149.0
75.065.090.075.050.080.0

50.0)(

1839.0
75.065.090.075.050.080.0

80.0)(

211

2

1

ΘΘQ

Θ

Θ

PPP

P

P

Step 2:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=′+′=

=
+++

×−=′

=
+++

×−=′

3623.0)()()(

1735.0
65.060.065.070.0

65.0)2988.01()(

1888.0
65.060.065.070.0

70.0)2988.01()(

432

4

3

ΘΘQ

Θ

Θ

PPP

P

P

Step 3:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=′+′=

=
+

×−−=′

=
+

×−−=′

3389.0)()()(

1739.0
58.055.0

58.0)3623.02988.01()(

1650.0
58.055.0

55.0)3623.02988.01()(

653

6

5

ΘΘQ

Θ

Θ

PPP

P

P

 22

Fig. 5. EGA flowchart.

F. Generation Model

Since chromosomes in EGA can experience during evolution, the conventional

generation models are no more useful. Instead, one may use the GENITOR method [36] as

generation model for EGA.

G. EGA Flowchart

The EGA flowchart is shown in Fig. 5. This evolutionary algorithm initially generates a

random population. The chromosomes of the current population are then updated by CUP

and the process is repeated until there are at least two mature chromosomes. In the next

stage, based on the fitness of chromosomes, two mature individuals are selected from the

current population as parents by a selection operator. Two offspring are then generated by

the parents using the crossover and mutation operators. Finally, the new population is

 23

generated by replacing two chromosomes that have the smallest fitness by the new

offspring. The above procedure is repeated until a stop criterion is satisfied.

Since in each generation, the elite chromosomes are kept in the population, according to

the Rudolph theory [44], the proposed evolutionary group converges eventually to the

global optimum after a sufficient number of generations. In EGA, the selection, crossover,

and mutation operators and the stop criterion can be determined according to the

application requirements.

H. EGA Computational Volume

Suppose that u and v are the computational volumes (the number of basic operations) for

indexing and computing the recall measure for all images in the reference imagebase,

respectively:

(38)
⎪⎩

⎪
⎨
⎧

=

=

vJT

uT

j

j

)]([

)];(Indexing[

Θ

ΘD

where,)(⋅T returns the computational volume. In CBIR systems, when the reference

imagebase is sufficiently large, we have vuff . Hence, we may write:

(39)1, ffααvu=

The computational volumes of the selection, crossover, and mutation operators are

negligible compared to the indexing and retrieval algorithms.

Suppose that in elitism-base GA, m individuals (Mm <) from the current population

survive to the next population in each generation. Therefore, the computational volume of

elitism-based GA, during k generations, is given by:

() ⇒++−=+−−++=)()())(1)(()()],,([vummMkvukmMvuMmMkGAT Elitism

 24

(40)[] []mmMkumMkGAT Elitism +−⎟
⎠
⎞

⎜
⎝
⎛ +=)(11),,(

α

In particular, GENITOR can be actually considered as an elitism-based genetic algorithm

with m=M-2. Thus, we have:

(41)[] []2211),(−+⎟
⎠
⎞

⎜
⎝
⎛ += MkuMkGAT Genitor α

Similarly, simple GA are elitism-base GA with m=0. Thus, their computational volume is

given by:

(42)kMuMkGAT Simple ×⎟
⎠
⎞

⎜
⎝
⎛ +=

α
11)],([

On the other hand, the computational volume of the indexing algorithm in EGA is

proportional to the number of images to be indexed. Hence, we have:

(43)[] MjLk
L
uT jk ,,2,1,1,...,1,0,);(Indexing evn K=−==ΘD

The following equation can be easily derived from (7), (21), (38) and (39):

(44)[]
⎪
⎩

⎪
⎨

⎧
=⎟

⎠
⎞

⎜
⎝
⎛

=Θ′

Otherwise,0

,...,1,0,1
),(ˆ

3

Lgu
L
g

gJT j α

(45)
α
ugJT j ≤Θ′≤)],(ˆ[0

Therefore, the computational volume of the evaluation function for a chromosome varies

during evolution according to the following sequence:

uu
L

u
L ααα

1,,21,11,0
33

L⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

The mathematical expectation of the above sequence may be considered as an upper band

for the expectation of the computational volume of the evaluation function:

 25

(46)[]()
L

g
j L

gEugJTE
0

3

3
),(ˆ0

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤Θ′≤

α

If L is large enough (L>20), the above equation may be simplified as:

(47)[]() ugJTEL j α4
1),(ˆ020 ≤Θ′≤⇒>

For large number of generations (k→∞), the above expectation can be used as an upper

band of the average computational volume of the evaluation function for each chromosome

in each step of CUP during evolution.

In EGA, the immature chromosomes should be kept in the population during λ

generations until they become mature. Therefore, the EGA computational volume after k

generations (k→∞) is computed using (47), as follows:

(48)[] u
L

Sku
L

MSMkEGT
L
uSk

L
uM ⎟

⎠
⎞

⎜
⎝
⎛ ++−+⎟

⎠
⎞

⎜
⎝
⎛ +≤≤+−+

α
λλ

α
λλλλλ

4
11)2)((

4
11),,;()2)((

Therefore:

(49)[] [] [])2()2(
4
11),,;()2()2(λλλ
α

λλλλ −−++⎟
⎠
⎞

⎜
⎝
⎛ +≤≤−−++ SMSk

L
uSMkEGTSMSk

L
u

Using (40) and (49), the relative computational volume of elitism-based GA with respect to

EGA is obtained by:

[]

[]
[]

[]
[]

[]
⇒

−−++

+−⎟
⎠
⎞

⎜
⎝
⎛ +

≤=≤
−−++⎟

⎠
⎞

⎜
⎝
⎛ +

+−⎟
⎠
⎞

⎜
⎝
⎛ +

∞→∞→∞→)2()2(

)(11
lim

),,;(
),;(

lim)(
)2()2(

4
11

)(11
lim

λλλ

α
λ

ξ
λλλ

α

α

SMSk
L
u

mmMku

SMkEGT
mMkGAT

m
SMSk

L
u

mmMku

k
Elitism

kElitismk

(50)⎟
⎠
⎞

⎜
⎝
⎛ +

+
−≤≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+

+
−

αλ
ξ

α

α
λ

11
2

)()(
41

11

2
)(

S
mMLmLS

mML
Elitism

For Lffα we have:

(51)λ
ξ

2
)()(

+
−≈

S
mMLmElitism

 26

In other words, in EGA, the evolution proceeds
λ

ξ
2

)()(
+

−=
S

mMLmElitism times faster than in

elitism-based GA with Lffα . Similarly, the relative computational volume of GENITOR

and simple GA with respect to EGA are obtained by:

(52)⎟
⎠
⎞

⎜
⎝
⎛ +

+
≤−=≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+

+ αλ
ξξ

α

α
λ

11
2

2)2(
41

11

2
2

S
LM

LS
L

ElitismGenitor

(53)⎟
⎠
⎞

⎜
⎝
⎛ +

+
≤=≤⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+

+ αλ
ξξ

α

α
λ

11
2

)0(
41

11

2 S
ML

LS
ML

ElitismSimple

GENITOR is considered as a fast generation model; because its computational volume is

2/)(mM − and 2/M times smaller than the elitism-based and simple GA, respectively.

According to (52), EGA computational volume is
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+

+ α

α
λ 41

11

2
2

LS
L times smaller than

GENITOR.

I. EGA and Evolution Theory

According to the new evolution theory, called adaptation and natural selection proposed

by G. Williams in 1966 [38], everything in the nature is only caused by natural selection in

the population. EGA corresponds better to this theory since in EGA; the chromosomes can

experience new conditions during evolution. Moreover, in each generation, there is a

competition among the chromosomes of the current population in which the best

chromosomes win according to their current and previous performances. Elimination of a

chromosome (death) in EGA is the result of harmful effects of the genes which might

previously have dominant advantages. On the other hand, a chromosome, that previously

had poor performance, may have more chance for survival in the current group due to its

 27

current advantages. This behavior of EGA is in accordance with the pleiotropy [39], while

it is not included in conventional GA.

IV. Experimental Results

Although EGA has been presented in the context of CBIR, its development is not

dependent on this context. In other words, CBIR is a good example for indicating the

limitations of the evolutionary algorithms like GA for solving optimization problems

involved with large databases. Therefore, EGA is an efficient algorithm potentially

applicable to problems such as feature extraction in FR and handwritten recognition [45-

46], CBIR [18], data mining [47], and medical applications [48] where large databases

should be processed. Wavelet correlogram is a state-of-the-art wavelet-based approach for

CBIR [18, 49]. This image indexing retrieval algorithm and its variations [40]

demonstrated high performance compared to other CBIR algorithms such as SIMPLIcity

[17]. This section illustrates the application of EGA to optimize the quantization thresholds

of the wavelet correlogram algorithm as an essential and time-consuming task.

EGA can be used to optimize other conventional CBIR systems in the same manner. For

example, it can be used to optimize the color quantization thresholds in color correlogram

[5], coherency and centrality thresholds in CCV [50], and the quantization thresholds of

wavelet coefficients in the wavelet histogram algorithm [51].

A. Wavelet Correlogram

The block diagram of the wavelet correlogram indexing algorithm is shown in Fig. 6. As

illustrated, the wavelet coefficients of each image are first computed in three consecutive

 28

scales and then quantized by quantization thresholds shown in Fig. 7. In the next stage, the

autocorrelogram [5] of the wavelet coefficients in each scale is computed using only LH

and HL matrices. The resultant autocorrelogram is finally used for the construction of the

image feature vector. As illustrated in Fig. 7, a simple procedure has been used for

determining the quantization thresholds in the original work [40]. Here, EGA was used to

optimize these thresholds.

Fig. 6. Block diagram of the wavelet correlogram indexing algorithm [49].

B. Optimizing Quantization Thresholds Using EGA

To optimize the quantization thresholds of the wavelet correlogram indexing algorithm,

the reference imagebase should be partitioned into L subsets. On the one hand, a large L

reduces the computational volume according to (50)-(53). On the other hand, for a normal

evolution progress, each subset should contain the same number of images from each

category. Consequently, the possible values of L are between 1 and C=100. Obviously,

selecting L=100 provides the fastest evolution progress. In contrary, the best optimization

performance may be resulted with L=1 in which EGA solution and computational volume

are the same as GENITOR. In these experiments, L=100 was selected for obtaining the

minimum evolution time. Evolutionary genes of each chromosome are corresponded to the

quantization thresholds as indicated in Fig. 8.

 29

Fig. 7. Original quantization thresholds of the wavelet correlogram algorithm [18].

Fig. 8. Quantization thresholds introduced by chromosome i.

According to (50)-(53), the value of λ should be selected as small as possible to obtain the

smallest computational cost. However, as illustrated in Fig. 9, the evaluation values of

chromosomes decrease very fast during the first 5 generations and its variations become

slower thereafter. Consequently, in order to suppress the harmful effects of the initial

variations caused by small cardinality of the local featurebase (see Subsection III-C), only

the chromosomes older than 5=λ are considered as mature and participate to generation.

In this application of EGA, the evolutionary genes of only one chromosome was

corresponded to the quantization thresholds appeared in Fig. 7; and for other chromosomes

of the initial population, they were randomly generated (seeding method [52]). The

population size and the number of mature chromosomes in CUP were set to M=150 and

 30

S=0.2×M=30, respectively. Moreover, we used the tournament selection operator [53] in

which the tournament size was set to 7M , one-point mathematical crossover operator

[54], and typical mutation operator in which the mutation probability was set to 01.0=mP

[43]. The parameter α was experimentally estimated as α=180. Consequently, using (50),

(52) and (53), the relative computational volumes of Elitism-based GA, GENITOR, and

simple GA with respect to EGA were:

(54)mmm Elitism 52.2378)(2.2330 −≤≤− ξ

(55)0.5)148(4.4 ≤=≤ ElitismGenitor ξξ

(56)378)0(330 ≤=≤ ElitismSimple ξξ

Fig. 9. Variations of the evaluation function for an EGA chromosome in different ages.

Fig. 10. Optimal quantization thresholds computed by EGA.

 31

That means, the EGA computational volume was at least 4.4, 330-2.2m, and 330 times

smaller than GENITOR, the elitism-based, and simple GA, respectively.

C. Simulation Results

All the simulations in this section were performed on a Pentium IV 2.8 GHz system under

Matlab environment. We used EGA in order to optimize the wavelet correlogram

quantization thresholds as stated in the previous subsection. Significant improvements

were resulted by the algorithm evolution during 1000 generations.

Fig. 9 shows the variations of the evaluation function for the optimal chromosome

obtained by EGA. As illustrated, the best performance was achieved by the oldest

chromosomes with the age 100 in the final population. The optimal quantization thresholds

corresponding to the best chromosome are indicated in Fig. 10.

Fig. 11 shows the histogram of chromosomes’ ages in the final EGA population. The

distribution of chromosomes in terms of their age is as follows: 4% immature (younger

than 5), 20% young (with the age between 5 and 35), 70% middle-aged (with the age

between 35 and 80), and 6% old (older than 80). Therefore, a reasonable age distribution

was observed in the final population. The middle-aged chromosomes, with majority in

each population, are well-behaved ones which have obtained sufficient experience and can

compete with the older chromosomes. The young chromosomes are the offspring of the

older ones and are considered as the investment of the population for next generations.

The above optimization algorithm took about 107 hours (equivalent to 4.5 days) long.

According to Equations (50), (52), and (53), a similar optimization process with the same

number of generations (k=1000 generations) takes 471, 28248, and 35310 hours

 32

(equivalent to 19.6 days, 3.22 years and 4.03 years) for GENITOR, elitism-based GA (with

m=0.20×M), and simple GA, respectively.

Fig. 11. The histogram of chromosomes’ ages in the final population.

The fitness probability variations during evolution for the best and worst chromosomes in

the population are shown in Fig. 12. As illustrated, the fitness probabilities of the

chromosomes were considerably different in the first generations. However, during

evolution, the poor chromosomes were replaced by better offspring and consequently, the

difference between the above fitness probabilities decreased.

Tables I and II compares the performance of the wavelet correlogram CBIR with optimal

and original quantization thresholds (Figs. 10 and 7, respectively) in terms of different

evaluation measures including average and standard deviation (STD) of precision (P),

weighted precision (Q), recall (R) and rank (C) [8, 17]. The above comparison is further

illustrated in Fig. 13. For the query image kI , the precision is defined as follows:

 (57){ })()(,);,(||,,2,11);,(kjkjk nRankj
n

nP IIΘIIDΘI Ψ=Ψ<== K

 33

Fig. 12. Fitness variations of the best and worst chrosmosmes during EGA evolution.

where, n indicates the number of retrieved images and the function),;(ΘII kjRank returns

the rank of image Ij (for the query image Ik) among all images of D when the indexing

algorithm parameters are initialized by Θ. In the same manner, the weighted precision,

recall, and rank are defined according to (58-60), respectively:

 (58){ }∑ =
Ψ=Ψ<== n

k kjkjk kRankj
kn

nP
1

)()(,);,(||,,2,111);,(IIΘIIDΘI K

(59));,();(ΘIΘI CPR kk =

(60)∑ Ψ=Ψ
=

)()(
);,(1);(

kj
kjk Rank

C
R

II
ΘIIΘI

The average and STD of precision for the i-th similarity category of the reference

imagebase are given by (61) and (62), respectively:

(61)∑ =Ψ
=

i k
i

k
nP

C
nP

)(ave);,(1);(
I

ΘIΘ

(62)()∑ =Ψ
−

−
=

i
i

k
k

nPnP
C

niP
)(

2
ave

i
std);();,(

1
1),(

I
ΘΘI

Finally, the total average and STD of precision for the whole reference imagebase are

computed by (63) and (64), respectively:

 34

Table I. Evaluation of the wavelet correlogram with
original quantization thresholds, setting n=10.

stdC aveC stdR (%) aveR (%) stdP (%) aveP (%) stdP (%) aveP (%) Category

83 304 12.3 28.9 23.8 68.0 27.7 56.7 Africans 1
131 345 16.7 27.9 24.0 63.0 28.5 49.9 Beaches 2
142 314 12.9 29.4 19.5 60.1 22.4 46.9 Buildings 3
71 110 16.6 63.4 18.4 88.2 22.7 83.8 Buses 4
69 438 10.2 25.2 19.8 84.5 26.6 74.9 Dinosaurs 5
48 256 8.2 28.3 18.1 63.4 19.3 48.5 Elephants 6
81 116 19.9 66.0 18.4 89.5 23.2 84.8 Flowers 7
63 268 10.6 29.9 21.4 81.1 27.0 68.9 Horses 8
72 345 8.3 22.1 20.3 54.9 19.8 39.9 Mountains 9
51 249 10.9 31.0 23.0 60.9 26.6 48.8 Food 10

129 275 19.9 35.2 24.1 71.4 29.0 60.3 Total

Table II. Evaluation of the wavelet correlogram with
EGA-optimized quantization thresholds, setting n=10.

stdC aveC stdR (%) aveR (%) stdP (%) aveP (%) stdP (%) aveP (%) Category

78 282 12.7 31.1 25.0 68.2 29.2 57.7 Africans 1
131 335 16.5 28.6 23.4 61.9 28.2 49.3 Beaches 2
141 308 12.1 30.5 20.6 63.2 23.7 50.9 Buildings 3
79 108 16.4 64.0 15.3 91.2 20.5 87.1 Buses 4
91 410 10.6 28.8 22.0 82.8 28.5 74.6 Dinosaurs 5
44 235 8.4 30.7 17.5 70.7 20.9 55.7 Elephants 6
82 125 19.9 65.3 19.4 88.3 24.3 84.3 Flowers 7
99 264 13.9 39.9 19.5 85.9 23.1 78.9 Horses 8
79 324 9.7 25.1 21.2 60.0 23.7 47.2 Mountains 9
57 236 14.3 36.4 26.0 67.5 31.8 57.1 Food 10

127 263 19.6 38.0
23.9 74.0 29.4 64.3 Total

 (63)∑ =
= ||

1ave);,(
||

1);(D ΘI
D

Θ
k k nPnP

(64)()∑ =
−

−
= ||

1k
2

avestd);();,(
1||

1),(D ΘΘI
D

nPnPniP k

The average and STD of the other evaluation measures are also defined in the same

manner.

As can be observed, the optimal quantization thresholds improved all the evaluation

measures of the wavelet correlogram algorithm. In order to verify the significance of the

improvements provided by EGA optimized quantization thresholds, we applied the

hypothesis testing. This test confirmed that the average precision and recall were improved

 35

with statistically significance level ρ=0.01. It also demonstrated that the average weighted

precision and rank were improved with statistically significance level ρ=0.05.

Therefore, EGA was successful to optimize effectively the indexing parameters (the

quantization thresholds) of the wavelet correlogram in a shorter computational time

compared to the conventional evolutionary optimizers such as GA.

 (a) (b)

 (c) (d)
Fig. 13. Evaluation results of the wavelet correlogram algorithm with EGA-optimized quantization thresholds

compared to the original quantization thresholds in terms of different evaluation measures including (a)

average precision, (b) average weighted precision, (c) average recall, and (d) average rank.

In Fig. 14, the retrieval results of the wavelet correlogram algorithm with the optimal

quantization thresholds (computed by EGA) for 4 query images are shown. The precision

 36

of the algorithm, for each query image, is appeared at the right-hand side of the graphical

user interface.

V. Conclusion

In this paper, a novel evolutionary method called evolutionary group algorithm was

proposed for solving time-consuming optimization problems involved with large

databases.

The database was partitioned into several subsets and each subset was used by an

updating process as training patterns for each chromosome during evolution by EGA.

Additionally, for each chromosome, an age parameter was defined for indicating the

progress of the updating process. Two types of genes including evolutionary and history

genes were defined for the proposed chromosomes. Evolutionary genes were able to

participate to evolution, and history genes were aimed to save the previous states of the

updating process. Furthermore, in each generation, a new fitness function was defined to

evaluate the fitness of the chromosomes with different ages in the population.

The novel algorithm was used for optimizing the quantization thresholds of the wavelet

correlogram method for CBIR. The optimal parameters, obtained by EGA in a reasonable

computational time, improved significantly the performance of the wavelet correlogram

algorithm for CBIR.

Although the proposed evolutionary algorithm is developed in the context of CBIR, it can

be used in other applications in which large databases should be processed. We expect our

developments to have application in other evolutionary algorithms as well. How this can be

achieved is an open problem and further research is necessary to this end.

 37

Acknowledgment

This work was partially supported by Iran’s Telecommunication Research Center under

grant No. 500/1451.

References

[1] “Special issue on digital libraries,” IEEE Trans. Pattern Anal. Mach. Intell., 18(8), 1996.

[2] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at

the end of early years,” IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1340-1380, 2000.

[3] V.N. Gudivada, V. Raghavan, “Content based image retrieval systems,” IEEE Comp., 28(9):18-22, 1995.

[4] M.J. Swain and D.H. Ballard, “Color indexing,” Int'l J. Computer Vision, 7(1):11-32, 1991.

[5] J. Huang, S.R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image indexing using color correlograms,” in

Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognit., 1997, pp. 762-768.

[6] M. Stricker and A. Dimai, “Spectral covariance and fuzzy regions for image indexing,” Machine Vision

Applications, 10(2):66-73, 1997.

[7] F. Mahmoudi, J. Shanbehzadeh, A.M. Eftekhari-Moghadam, and H. Soltanian-Zadeh, “Image retrieval

based on shape similarity by edge orientation autocorrelogram,” Pattern Recognit., 36(8):1725-36, 2003.

[8] R. Schettini, G. Ciocca, and S. Zuffi, “A survey on methods for color image indexing and retrieval in

image databases,” Color Imaging Science: Exploiting Digital Media, R. Luo and L. MacDonald eds., J.

Wiley, 2001.

[9] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D.

Petkovic, D. Steele, and P. Yanker, “Query by image and video content: the QBIC system,” IEEE

Computer, 28(9):23-32, 1995.

[10] V.E. Ogle and M. Stonebraker, “Chabot: retrieval from a relational database of images,” IEEE

Computer, 28(9):40-48, 1995.

[11] A. Pentland, R. Picard, and S. Sclaroff, “Photobook: content-based manipulation of image databases,”

Int’l J. Computer Vision, 18(3):233-254, 1996.

[12] C. Carson, M. Thomas, S. Blongie, J.M. Hellerstein, and J. Malik, “Blobworld: a system for region-

based image indexing and retrieval”, in Proc. 3rd Int’l Conf. Visual Information Syst., 1999, pp. 509-516.

 38

[13] A.D. Bimbo, M. Mugnaini, P. Pala, and F. Turco, “Visual querying by color perceptive regions,”

Pattern Recognit., 31(9):1241-1253, 1998.

[14] A.K. Jain and A. Vailaya, “Shape-based retrieval: a case study with trademark image database,” Pattern

Recognit., 31(9):1369-1390, 1998.

[15] S. Abbasi, F. Mokhtarian, and J. Kittler, “Curvature scale space in shape similarity retrieval,”

Multimedia Syst., 7(6):467-476, 1999.

[16] L. Balmelli and A. Mojsilovic, “Wavelet domain features for texture description, classification and

replicability analysis”, in Wavelets in Signal and Image Analysis: from Theory to Practice (edited book),

Netherland: Kluwer Academic Publishers, 2001.

[17] J.Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: semantics-sensitive integrated matching for picture

libraries,” IEEE Trans. Pattern Anal. Mach. Intell., 23(9):947-963, 2001.

[18] H. Abrishami Moghadam, T. Taghizadeh Khajoie, A.H. Rouhi, and M. Saadatmand-T., “Wavelet

correlogram: a new approach for image indexing and retrieval,” Pattern Recognition, 38(12):2506-18,

2005.

[19] M.K. Mandal, T. Aboulnasr, and S. Panchanathan, “Fast wavelet histogram techniques for image

indexing,” Comput. Vis. Image Understand., 75(1-2):99-110, 1999.

[20] J.Z. Wang, G. Wiederhold, O. Firschein, and S.X. Wei, “Content-based image indexing and searching

using Daubechies' wavelets,” Int’l J. Digital Libraries, 1(4):311-328, 1997.

[21] G.-D. Guo, A. K. Jain, and W.-Y. Ma, and H.-J. Zhang, “Learning similarity measure for natural image

retrieval with relevance feedback,” IEEE Trans. Neural Networks, 13(4):811-820, 2002.

[22] Y. Rui, T.S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: a powerful tool for interactive

content-based image retrieval,” IEEE Trans. Circuits Syst. Video Technol., 8(5):644-655, 1998.

[23] J.R. Smith and C.S. Li, “Image-classification and querying using composite region templates,” Comput.

Vis. Image Understand., 75(1-2):165-174, 1999.

[24] O. Nelles, Nonlinear system identification: from classical approaches to neural networks and fuzzy

models, Berline: Springer-Verlag, 2001.

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, New Jersey: Prentice-Hall, 1999.

[26] F. Tian and L. Wang, “Chaotic simulated annealing with augmented Lagrange for solving combinatorial

optimization problems,” in Proc. 26th Annual Conf. IEEE Indust. Electron. Soc., vol. 4, 2000, pp. 2722-5.

 39

[27] T. Bäck, H.P. Schwefel, “An overview of evolutionary algorithm for parameter optimization,” IEEE

Trans. Evolutionary Computational, 1(1):1-23, 1993.

[28] B.-T. Zhang, J.-J. Kim, “Comparison of selection methods for evolutionary optimization,” Evolutionary

Optimization, 2(1):55-70, 2000.

[29] T. Stützle and M. Dorigo, “ACO algorithms for the traveling salesman problem,” In K. Miettinen, M.

Makela, P. Neittaanmaki, J. Periaux, editors, Evolutionary Algorithms in Engineering and Computer

Science, Wiley, 1999.

[30] Á.E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE

Trans. Evolutionary Computation, 3(2):124-141, 1998.

[31] R. Smith, “Adaptively resizing populations: an algorithm and analysis,” in Proc. 5th Int. Conf. Genetic

Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan Kaufmann, 1993, p. 653.

[32] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS –A genetic algorithm with varying population

size,” in Proc. 2nd IEEE Conf. Evolutionary Computation, 1994, pp. 73-78.

[33] M. Srinivas and L.M. Patnaik, “Adaptive probabilities of crossover and mutation in genetic algorithms,”

IEEE Trans. Syst., Man, and Cybern., 24(4):17-26, 1994.

[34] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: empirical

results,” Evol. Comput., 8(2):173-195, 2000.

[35] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitism multiobjective genetic algorithm:

NSGA-II,” IEEE Trans. Evolutionary Computation, 6(2):182-197, 2002.

[36] D. Whitley, “The GENITOR algorithm and selective pressure”, in Proc. 3rd Int. Conf. Genetic

Algorithms, Morgan-Kaufmann Ed., 1989, pp. 116-121.

[37] Z.-B. Xu, K.-S. Leung, Y. Liang, and Y. Leung, “Efficiency speed-up strategies for evolutionary

computational: fundamentals and fast-GA,” Applied Mathematics and Computational, vol. 142, pp. 341-

388, 2003.

[38] G.C. Williams, Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought,

Princeton, New Jersey: Princeton University Press, 1966.

[39] G.C. Williams, “Pleiotropy, natural selection, and the evolution of senescence,” Evolution, 11(4):398-

411, 1957.

[40] H. Abrishami Moghadam, T. Taghizadeh Khajoie, A.H. Rouhi, “A new algorithm for image indexing

and retrieval using wavelet correlogram,” in Proc. IEEE Conf. Image Process., vol. 2, 2003, pp. 497-500.

 40

[41] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego: Academic Press, 2003.

[42] A.D. Narasimhalu, M.S. Kankanhalli, and J. Wu, “Benchmarking multimedia databases,” Multimedia

Tools and Applications, 4(3):333-356, 1997.

[43] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, 4(2):65-85, 1994.

[44] G. Rudolph, “Convergence analysis of canonical genetic algorithms,” IEEE Trans. Neural Networks,

5(1):96-101, 1994.

[45] Z. Suna, G. Bebisa, and R. Millerb, “Object detection using feature subset selection,” Pattern

Recognition, 37(11):2165-2176, 2004.

[46] L. S. OLIVEIRA and R. SABOURIN, “A methodology for feature selection using multiobjective

genetic algorithms for handwritten digit string recognition,” Int’l J. Pattern Recognition and Artificial

Intelligence, 17(6):903-929, 2003.

[47] A.A. Freitas, “A survey of evolutionary algorithms for data mining and knowledge discovery,” In A.

Ghosh and S. Tsutsui, editors, Advances in Evolution. Comput., pp. 819-845. Springer-Verlag, Aug. 2002.

[48] P. Zhang, B. Verma, and K. Kumar, “Neural vs. statistical classifier in conjunction with genetic

algorithm based feature selection,” Pattern Recognition Letters, 26:909-919, 2005.

[49] M. Saadatmand-T., H. Abrishami Moghadam, “Enhanced wavelet correlogram methods for image

indexing and retrieval,” in Proc. IEEE Int’l Conf. Image Processing, vol. 1, Sep. 2005, pp. 541-544.

[50] G. Pass, R. Zabih, J. Miller, “Comparing images using color coherence vectors,” Proc. 4th ACM

Multimedia Conf., 1996.

[51] M.K. Mandal, T. Aboulnasr, S. Panchanathan, “Image indexing using moments and wavelets,” IEEE

Trans. Consumer Electronics, 42(3):557-565, 1996.

[52] M. A. Lee and H. Takagi, “Embedding a priori knowledge into an integrated fuzzy system design

method based on genetic algorithms,” in Proc. 5th IFSA World Congress, vol. II, 1993, pp. 1293-1296.

[53] D. E. Goldberg, “Genetic and evolutionary algorithms in the real world,” Illinois Genetic Algorithms

Laboratory (IlliGAL) Technical Report No. 99013, 1999.

[54] A. P. Engelbrecht, Computational Intelligence, England: John Wiley & Sons, 2002.

 41

Fig. 14. Retrieval results of the wavelet correlogram image indexing and retrieval algorithm with the EGA-optimized
quantization thresolds for four different query images. The precision of the algorithm is appeared at the right-hand side of the
graphical user interface.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

