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Self-Affine Mapping System and Its Application to
Object Contour Extraction

Takashi IdaMember, IEEEand Yoko Sambonsugi

Abstract—A self-affine mapping system which has convention- to be fitted to the contour in an ideal case: the object contour
ally been used to produce fractal images is used to fit rough lines js formed by distinct edges and the background is almost flat.
to contours. The self-affine map’s parameters are detected by o yever, blurred edges of the object contour or the texture in
analyzing the blockwise self-similarity of a grayscale image using . . . . oo
a simplified algorithm in fractal encoding. The phenomenon that the background introduce misextraction. Itis also difficult to ex-
edges attract mapping points in self-affine mapping is utilized in tract sharp corners accurately because of the smoothness term
the proposed method. The boundary of the foreground region of in the energy function.
an alpha mask is fitted by mapping iterations of the region. Itis A new fitting method which provides highly accurate con-
shown that the proposed method accurately produces not only tours is proposed in this paper. The concept of our method is

smooth curves but also sharp corners, and has the ability to extract . . .
both distinct edges and blurred edges using the same parameter. quite different from that of the snake method. A self-affine map-

It is also shown that even large gaps between the hand-drawn line Ping system instead of the energy minimization procedure is
and the contour can be fitted well by the recursive procedure of used to approach and fitthe roughly drawn line to the object con-
the proposed algorithm, in which the block size is progressively tour. The contractive self-affine mapping system has been used
decreased. These features reduce the time required for drawing . produce fractal figures [6], [7]. We use it for object contour
contours by hand. S - . ,

extraction in this paper. The self-affine map’s parameters are de-
~ Index Terms—Boundary extraction, chaos, fractals, segmenta- tected by analyzing the blockwise self-similarity of a grayscale
tion. image using a simplified algorithm in fractal encoding [7], [8].

In an earlier paper [9], we showed that edges attract mapping

|. INTRODUCTION points during iteration of the map when the mapping points are

. . . initially set near the edges. This attraction phenomenon is also
HE EXTRACTIO.N of the cqntours Qf (.)bJeCt_S In animag tiIize>(; in the method prgoposed here, and thz contour is obtained
ha_s peen mve_s'qgat(_ad actively as_lt IS a significant t_e_c s an attractor of the mapping system [10]. The object contour
nology in image editing, image searching, image recognitiojy, ixtracted as a self-similar curve instead of a smooth curve.

and otr_]er Image processing prc_;cedures. Our proposal is ai proposed method can extract sharp corners since they have
at applications which demand highly accurate contours, such[ﬁlg self-similarity

object-based composition, mixing, and editing. Once an ObjeCtlt is shown that the mapping system extracted both distinct

contgur IS lextr%c;[)ed, th?hbat_:kground image ou_ttsuje the ObJS 9 blurred contours of objects, both sharp corners and smooth
can be reéplaced by anothér image or a Composité Image can.giges ag a result, highly accurate contours were extracted. It

made with other objects. On the other hand, MPEG-4, the ii@'also shown that even large gaps between hand-drawn lines

ternational standard of moving picture coding, includes the Ahd contours can be fitted well by the recursive procedure of

bitrary s_h_ape codmg (4 Wh'(.:h can be utilized for o_bject-base[d; proposed algorithm, in which the block size is progressively
composition. Object extraction needs are becoming more &creased [11].
acting in image communication and storage [2].

It takes much time and effort to draw an accurate contoH
by hand. One solution often used to overcome this problem

that the line is first drawn roughly near the contour and then

In Section I, the self-affine map is defined and the typical
Ehavior of the mapping system and its conventional applica-
tidns are described briefly. The proposed method and the exper-
iphental results are shown in Sections Il and IV, respectively.

is fitted automatically to the contpur. A_n active _contour mod he proposed and the conventional snake method are compared
called the snake model has beeninvestigated widely as a CONtAUWe tion V and the conclusions are outlined in Section V.

fitting method [3]-[5]. In the snake method, an energy function

is defined, according to continuity and smoothness of contour
line and image features. The object contour is extracted by min-
imizing the energy function. Even though the roughly drawA. Mapping System Based on Image Self-Similarity

line is fairly distant from the object contour, the line is able Animage having a suppoft C R" with intensityg(z) for all
xz € G is considered. In the case that affine maps4; — R"
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Fig. 2. Self-affine mapping. The intersection.4f andX is mapped byy;.

image plané?. «; were set to mag into top right part, bottom
left part and bottom right part, respectively.
B. Extraction of the Self-Affine Model

Letn = 2 for mapw; with square domaiV’; C G, which is
expressed by

wz(.’l:) =7r; (:c—:Ei)—i—('ri +$Ei), (4)

7y > 1 (5)

Fig. 1. Texture in each smaller block is almost similar to the texture in thetherex; is the center point of’;. An example o#W¥; andid; =
larger block including the smaller block. w;(W;) is shown in Fig. 4J¥; is translated by vector; and

] ] expanded by;.
on A; andw;(A;). Where! is the number of regiort;. The set Extracting a self-affine model using; asa; andv; asg; in

{4;, oy, Bilt =1, 2, -- -, I} is called the self-affine model of (1) is considered, where
the image.

An example of the self-affine model with= 5 is shown in vi(2) =piz + ¢, 6
Fig. 1. Where the smaller blocks are setaéi = 1, 2, - - -, 5). 0<p; <1 (1)

Each texture in4; is similar to the texture in the larger block Eirst somaw; are allocated. The allocation method depends
ai(4;) including 4;. Here,«; and jj; were set as expandingon the application of the self-affine model. Second, a search
maps and identity maps, respectively. Small difference betweggyerformed to identify the parameters of mapss:, ¢, ps,

the left-hand term and the right-hand term in (1) was allowegyq ;. which provide the minimum difference between the
It can be seen that the texture pattern in the smaller block is @ft_-hand and right-hand sides of (1) for evei;. Here, s;
most the same as that in the larger block. This self-affine modg{q+, are components of the vectey. The sets{W;, w;, v; }

is regarded as an extension of the compressed data of fragig {M;, m;, u;}, where M; = w;(W;), m; = w !, and
image coding [7], [8]. In fractal codingd; are set to cover the ,,. — v, are the extracted self-affine models.

whole image and do not overlap each otherare restricted to  Note that a block matching algorithm is usually used for the
expanding maps, ang are restricted to contracting maps.  search [7], [8].
If (1) is assumed, the following equation is also obtained:

Vo e ai(A), g(x) = 87" (g (a7 (x))), (i=1,2,-.-,1). Block Matching Algorithm
(i), gla) (g0 =) ( ()2) Step 1. Predetermined initial values are

Therefore, another self-affine modéh;(4,), ot gty is ~ Set to s and ¢ A sufficiently large

available directly from a self-affine modé€;, a;, 5;}. value is set to E, which keeps the min-
Let © denote the set of all subsets Gf A self-affine map _ imum difference. _ .
S: Q — Qis defined by Step 2: The sampled intensity values
g(w(x)) for every z € W, are calculated.
1 Usually, a bilinear filter or any other
S(X) = {U“Z (AimX)} ue. ©) interpolation filter is used to obtain
i=1

the values because sampling points may
Here,C is a constant set referred to as the condensation. Wherbe placed between the pixel points of
aregionX is provided, the intersection of; andX is mapped  images.
by «; (see Fig. 2). The union of those mapped regions andSéep 3: Predetermined initial values are
constant condensation set are the results of the map. set to p and gq.

When alle; are contractive§ is equivalent to the well-known Step 4:  v(g(w(x))) is calculated for every
transformation referred to as LIFS (local iterated function sys-z € W;.
tems) [7] and produces fractal figures by iteration§afithan Step 5: The differences between {g(=)|x €
initial set X [6]. Fig. 3 shows process whereby the Sierpinski W;} and {v(g(w(z)))|x € W;} are calculated.
triangle is produced. A square region was seXgsHere,l = 3 The mean squared error or the mean ab-
and A;(: = 1, 2, 3) were set as the same region, the whole solute distance is used as a measure
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Fig. 3. Sierpinski triangle is produced by contractive self-affine mapping. (a) Square region was set as the initial set, (b) region was mappegants: top
right, bottom left, and bottom right, (c) two iterations of mapping, (d) four iterations, and (e) eight iterations.

in (3). The results of two iterations, six iterations, and 20 iter-
Wi— — Mi = wi(Wi) ations ofS,, are shown in Fig. 5(a)—(c), respectively. Here, all
\E] // points inX are shown as white points on the original images.
The coordinates of every point & were stored in the memory
as floating-point variables that were overwritten for each map.
G The mapped points were repelled from the edges and formed
groups. The points moved within each group but did not jump
to other groups as a result of the mapping. This is because the
Fig. 4. Example oV, andM; = w;(Wy). points near an edge leave the edge by mappinig the ratio of
r;, and some trapping regions form in flat regions surrounded by
of the difference. If the difference is edges [9]. The number of points X does not change because
smaller than L, E is replaced by the the union ofW; covers the whole off andW; do not overlap
difference and the current r, s, t, p, and ¢ each other.
are kept as  y, s, i, pi, @and  g;. The results for the self-affine méfy, with contracting maps
Step 6: In the case that all prepared p such that
and ¢ are checked, the procedure goes
to step 7. In other cases, p and ¢ are o =1y (12)
changed in the predetermined order and A; = M,; (12)
the procedure returns to step 4. C=¢ (13)
Step 7: In the case that all prepared 7, S,
and ¢ are checked, the procedure is com- - : : .
are shown in Fig. 6. In this experiment, many points belong to
plete. In other cases, r,s, and t are

multiple M;; therefore, the number of points increases rapidly
with each mapping. In the above case, the initial 16 384 points
became 65 536 points after the first mapping. We traced only the
point by m; where

changed in the predetermined order and
the procedure returns to step 2.

C. Behavior of Self-Affine Mapping System

We will show two typical behaviors of the self-affine mapping k = max {i|M; includes the poirjt (14)
system in this section. Alk; are expanding for the first case and . ) ) S
contracting for the second case. when the point was in multipl&Z; due to limitations in the com-

Figs. 5 and 6 show the results of self-affine mapping usirj!teér memory _size. Because points which do not belong to any
the self-affine model of the test image Lenridg x 512, 8 i disappear in the nexf,,, the number of points decreased
bits/pixel).G was partitioned into blocks df6 x 16 pixels, and 0 12554 after 20 iterations df,,. Many mapped points were
they were set asV;, Wy, -+, Wioz4 in order of blocks from attracted to the nearby edges. This is because the distances be-
left to right with block lines from top to bottom. The block sizéWeen an edge and the points within the sahfeare reduced
of M was set to double that & (» = 2), andv was simplified BY mappingrn; in the ratio ofl/r;. It seems that there are very
as an identity mapp(= 1, ¢ = 0). The block matching algo- few points in F|g. 6(c) because the d|st§ncgs between many of
rithm was used for extraction of the self-affine model in whick® mapped points were less than the pixel interval.

s and¢ were moved pixel by pixel in-8 < s, t < 8, and the Thus, it was found that mappeq points are repelled_from (or
mean absolute distance was used as a measure of the differediggacted to) edges by the self-affine mappihgihena; in S
The initial setX, consisted of 16 384 points placed uniformly2re €xpanding (or contracting) maps.
in G at intervals of four pixels. _ _ _
Let S,, be a self-affine map with expanding maps such thaP- Image Processing Using Self-Affine Maps
o = ®) Some image representation methods using the self-affine map
¢ ¢ parametrized by the self-affine model have been proposed as

A=W, ©) applications. These include fractal segmentation [9], [12], edge
C=¢ (10) detection [9], and compression with pixel chaining decoding
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(a) (b} ()

Fig. 5. Results of expanding,,. (a) Two iterations, (b) six iterations, and (c) 20 iterations. The mapped points (white) were repelled from the edges.

() (k) (i)

Fig. 6. Results of contracting,,.. (a) Two iterations, (b) six iterations, and (c) 20 iterations. Many mapped points were attracted to nearby edges.

TABLE |
APPLICATIONS OFSELF-AFFINE MAPPING

Applications Self-affine modeling Self-affine map
W allocation Range of p a | A C Xo
Segmentation Method A p =1 (preferred) w | W & Pixel points
Edge detection Method B p = 1 (preferred) m | M ¢ G
Compression Method A | |p| < 1 (mandatory) | w | W ¢ Pixel points
Boundary fitting | Method C p =1 (preferred) m| M| XyN ﬁ W, | Given foreground
i=1

[12], [13]. In all of these applications, first a self-affine model is In segmentation using,,, the points initially at the pixel po-
extracted and then iteration of the self-affine map is performegitions are mapped, and mapped points such as those in Fig. 5(c)
The differences in the methods are listed in Table I. Here, thee classified into clusters. The segmented image is obtained by

W allocation methods are as follows. putting a color on the initial position of each mapped point de-
W allocation method A: pending on the cluster to which the mapped point belongs.
G is partitioned intdlV; such that?; do not overlap each  The edge image is directly obtained as the limit set ofthe
other and every point it¥ is covered by oné&V. iterations. HereX is an area instead of a set of points, and each
W allocation method B: pixelz € W; isreplaced by the corresponding sampling value at
G

is partitioned into blocks as in method A. The blocksv;(x) asS,,, in the actual procedur&X forms bands near edges
in which the variance of pixel values is greater than as the union of¥; by applyings,,, once toG, the bandwidth is
predetermined value are seti&s. reduced by repeatin§,,, and the edges are detected.
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p = 1 is preferred for segmentation and edge detection be-C is fixed to

cause the self-affine model, which is related to the self-simi- I

larity, is extracted with this condition [9]. C=XoN ﬂ W, a7)
Fractal image coding was originally proposed by Barnsley i=1

[14], [15] as a compression method for binary images and waso keep the regions where W; is not

applied to grayscale images by Barnsley and Jacquin [7], [8].placed as they are. Here, X, is the

The image is extracted as a self-affine model, using the blockforeground region of the initial alpha

matching algorithm with the conditigp| < 1, whichisneeded  pask. The procedure of each map S is

to decode the image. Usually, a contractive transformation ofg;,cn that the area
images called the fractal transformation is used for decoding. I
The image is obtained as an attractor with the transformation. U W, (18)
In another decoding method using self-affine mapping, a map of Par}
points inR? combined withS,, andx; is defined. The decoded of the alpha mask is overwritten by
image is obtained as the set of intensity values which do not . ' . :
. : . .. pixel value O first. Pixel value 1 is
diverge as a result of iteration of the map [13]. Some variations

of this decoding method are shown in references [12] and [13].232; (e)igihn p')s(zlm lin Ivalie Zt/i such th?(t )thie;
The boundary fitting referred to in Table I is shown in the next P 9 piing wil®
; equal to 1.
section. :
Step 5: Let e = ¢/2. In the case that e is

smaller than Emin(< €max), the procedure

is complete. In other cases, the proce-
We propose a new method for boundary fitting of alpha masksqure returns to step 2.

to object contours in which the contour is obtained by calcu-

lating the attractor of the self-affine mapping system. The phe-

nomenon that edges attract mapping points in contractive self-

affine mapping is utilized in the proposed method. For b to exactly matche, the following conditions must be
Fig. 12(a) is an example of a hand-drawn line for extractingptisfied.

the contour of the woman in the grayscale image. A binary condition 1) ¢ is equal to the invariant set .

image called an alpha mask is made by setting 1 for the pixelscondition 2) Allm; are contractive.

inside the line to define them as the foreground and O for thecgngition 3) b is sufficiently close ta.

other pixels to define them as the background. Our purpose iSor condition 1, ifen W; is similar toeN M; for everyi, cis

to fit the boundary betwegn the foreground and back_ground I@qual to the invariant set &f. Mismatches in the similarity re-

the alpha mask to the object contain the grayscale image. g it in houndary fitting errors. Smallvalues increase the prob-

I1l. PROPOSEDCONTOUR EXTRACTION

Desirable Conditions for the Proposed Method

A. Proposed Method ability of thi's. condition bei'ng. sat?sfied. - . o
. . ) For condition 2 to be satisfied, itis sufficient if (5) is satisfied.
The proposed algorithm using andv is as follows. An ideal condition for condition 3 is that bothand ¢ are
covered byW;

Cont our Extraction Algorithm 7

Step 1: The side length e of W; is set to bC UWi (19)
Cmax- ~

Step 22 W;(i = 1,2, ---,1) are placed using Z_,l
the W allocation method C as follows. cC UW7 (20)
W allocation method C: i1

The variable % is set to 1. The alpha and parts ob ande are within everyiv;

mask is scanned pixel by pixel from )
left to right and line by line from Vi, bNW; #¢ and (21)
top to bottom. When a pixel has a dif- Vi, eNW,; #o. (22)
ferent value from the upper pixel or the
left-hand pixel and is not included in a
W;(i < k) which has been placed already,

Equations (19) and (21) are satisfied whBn allocation
method C is used. Largervalues increase the probability of
(20) and (22) being satisfied. Sind¥; is set centered on a

W, is added centered on the pixel and k pixel inb, the side length of¥’; should be more than double the
is incremented to k4 1. length of the gap betwedrandec for condition 3 to be satisfied.
Step 3. The self-affine model is ex-
tracted. o . C. Parameter Setting
Stﬁf)e A;‘.oregrfg)inrgafegforlls ol;etrﬁ;edalpha %ggfs o The proposed method works well when edéh inc]uc_ies a
In (3), let part of ¢ as mentioned above. In such cases, a similar block

. can often be found in candidate blocks includitg, and it is
@ =m; (=w; ) (15)  estimated thad/; includes an edge other thamwhen and/; is
A =M, (=w; (W) (16) selected from a place that is far fro¥i;. Therefore, the search



IDA AND SAMBONSUGI: SELF-AFFINE MAPPING SYSTEM AND ITS APPLICATION TO OBJECT CONTOUR EXTRACTION 1931

'd d 4 4

ia ksl 1)

Fig. 7. Fitting to a sharp corner from outside. {&)allocation. (b) Initial state. (c) One iteration. (d) Two iterations. (e) Five iterations. The alpha mask boundary
b and blockdlV andMf are shown with white lines. The gap betweéend the object contourwas reduced with each successive mapping iterationh amatched

cin (e).
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Fig. 8. Fitting to a sharp corner from inside. (&) allocation. (b) Initial state. (c) One iteration. (d) Two iterations. (e) Five iterations. The small background
regions which appeared in (c) disappeared eventually, and the result shown in (e) was almost the same as that in 7.

range of the translation parameters in block matching should diference. Here, the sampling valyéuv(z)) was calculated by

such thatM; includesW; and averaging the four pixels around the sampling paift).
-1 e<s <™ 1 . (23) In step 4, the sampling value of the alpha maskat:) was
-7 = detected as the majority value, 0 or 1, of the four pixels around

for images which include edges other thanSatisfaction of the sampling point. If the numbers of Os and 1s were equal to
(23), however, does not always provide the best result. In exach other, the sampling value was set to 0.

periments using simple shapes which have no edge other than

¢, we used larger ranges than those specified by inequality (28) Simple Shapes

because there was no fear of detecting another edge. This aﬁzigs 7 and 8 show the results for a simple test image in-

proach provided better results. . . . cluding a sharp corner. The initial bounddrputside the ob-
In the case.of the.mazp. extract|c_)n ofthe self-affine model ISject andW allocation are shown with white lines in Fig. 7(a).
better wher is the |dept|ty mapping, i.x = 1 andg = 0[9]. Fig. 8(a) shows a case in whidlwas set inside the object. The
Because 1) the maximum gap length betwieande s about 375 0cation method B was used for these experiments. There-

¢/2,2) the gap is reduced in the ratiobfr with each mapping, ¢q e g is the same in Figs. 7 and 8. The parameters for the ex-

and 3)X does not change further when the gap becomes SmaB%rriments are shown in Table II

than the pixel interval ) The parts (b)—(e) in each of Figs. 7 and 8 stidar the initial
¢ <1> <1 (24) state, one iteration, two iterations, and five iterations, respec-
2\r tively. W and the correspondingy are also shown in (b) and
andn, which presents a sufficient number of iterationsSofis  (c).
given by It can be seen in Fig. 7 that the texturel&f (smaller block)
e in (c) is the same as that 8f (larger block) in (b), and that the
log 5 gap betweem andc in (c) is half of that in (b). The gap was
n log (25) reduced with each successive mapping, &fichlly matchede.

b did not change further after five iterations.
In Fig. 8, small background regions appeared in (c) because
the right bottom corner o#/ in (b) was outside the foreground
Inthe experiments, the block size &f; was set to double that region of the alpha mask. However, the holes became smaller
of W, (r = 2), andv was set as the identity map € 1, ¢ = 0). with each successive mapping iteration and eventually disap-
The block matching algorithm with full search was used ipeared.
step 3, the search rangeoands was setas-R < s, t < R, As shown in Fig. 7(e) and Fig. 8(d),converges to a unique
and the mean absolute distance was used as the measure afdh&our ifb is set neak initially. When we seb deeply inside

IV. EXPERIMENTS
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TABLE I
PARAMETERS FOREXPERIMENTS

Figs. 7,8 and 9 | Fig. 10 Fig. 11 Fig. 12 | Figs. 13 and 14

Image size 256 X 256 256 X 256 | 256 X 128 | 512 x 512 320 x 240
€mar 32 32 32 32 32
€min 32 4 32 4 4

W allocation Method B Method B | Method C | Method C Method C
R 64 32 16 16,8,4,2 16,8,4,2

n 5 54,32 5 5,4,3,2 54,32

L) ih ) () gl

Fig. 9. Example of a failure by the proposed method{ajpllocation. (b) Initial state. (c) One iteration. (d) Two iterations. (e) Five iterations. Wheas set
far from ¢, X converged to a complicated fractal shape.

La) b el Ll fi)

Fig. 10. Fitting to a zigzag shape. (a) Exampld®fandM. (b) e = 32. (c) e = 32 and16. (d) e = 32, 16, and8. (e)e = 32, 16, 8, and 4. Even large gaps
betweerb andc could be fitted well, and the contour was extracted in detail by the recursive procedure in which the block size was progressively decreased.

the object, the lack of the foreground region became largeXandvided similarity for one of the edges (the higher contrast edge)
converged to a complicated fractal shape as shownin Fig. 9. Was detected ad/. As a resultb was fitted to the left edge.
proposed algorithm does not assure conservation of topologyTdfere was no problem when the higher contrast edge was a part
the contour line. The authors cannot explain these phenomerighe object contour. However, when there is a higher contrast
analytically at this stage, and cannot show the rigorous boundadge parallel to the object contour and the gap between them is
for failures. When the condition 3 shown in Section 11I-B issmall,b will be fitted to the higher contrast edge instead of the
satisfied at least, the failure such as Fig. 9 can be avoided. object contour.

Fig. 10 shows the result for a zigzag imagewvas changed
from 32 to 4 andy was given by (25) for ea_ch. Similng B. Real Images
were not found for largéV. The case oé = 32 is shown in (a).
bbecame like an envelopeefs shown in (b). The cornerswere The contour of the woman in the test image Lensig2(x
produced in the process using smalefhe result shows that a 512 pixels, monochrome, 8 bits/pixel) was extracted using the
largeW is useful for closing the gap betwedmande when the proposed method. The white line in Fig. 12(a) is roughly drawn
gap is large, and a small& is useful for producing details of by hand as an initia. The ¢,,,x anden,;, were set to 32 and
the contours. 4, respectively. The search rangessand¢ were provided by

The proposed method does not work well near parallel edg@s8) for eache as shown in Table II.
as shown in Fig. 11. Because the distance between edges in thEhe result ofit” allocation withe = 32 is shown in Fig. 12(b)
original image was smaller thanof 17/, the block which pro- and (c) shows the intermediate stages during the process and
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= B
e} () le}

Fig. 11. Fitting to parallel edges. (&) allocation. (b) Initial state. (c) One iteration. (d) Two iterations. (e) Five iterattowss fitted to the higher contrast edge.

(h)

leh (d)

Fig. 12. Results using the test image Lenna. (a) Contour as drawn by hand. (b) Allocat#n(cj and (d) Results of contour extraction. ¢c)= 32. (d)
e = 32, 16, 8, and4.

corresponds to the completion ef= 32. The final result is  Then-step search [16] was performed in addition to the full

shown in Fig. 12(d). search for faster searching. The processing time using an MPU
The corners between the brim and the body of the hat wesith a 350 MHz clock speed is shown in Table Ill. Thestep

not included in any¥; with ¢ = 32; therefore the corners weresearch was more than three times as fast as the full search.

not extracted as yet in Fig. 12(c). The corners and details of thee extracted contour by the-step search, whose figure is

contours were produced by smaller block sizes and almost dit shown, was almost the same as that by the full search

of b fitted with ¢ finally. At the hair contour on the right side, [Fig. 12(d)].

an edge inside the hair was extracted wrongly for the reasoriWe also examined a constant block size witk 4. No fitting

explained in relation to Fig. 11. was achieved with only this block size.



1934 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

{1 pie

(a) (b} i)

Fig. 13. Fitting to sharp corners with distinct edges using a color image. (a) Initial states(pp search. (c) Full search.

(a) (h) ic)

Fig. 14. Fitting to a blurred contour. (a) Initial state. (p)step search. (c) Full search. Both distinct and blurred contours were extracted well with the same
parameters.

V. COMPARISON OF THESELF-AFFINE MODEL AND SMOOTH
CURVE MODEL

TABLE 1l
PROCESSINGTIME

Image | Proposed method (msec) | Snake method We proposed a self-affine model as an object contour model
" o T tal N in this paper. A contour model is usually required for the extrac-
[I751ep search | Tu searc (msec) tion of edges as object contours. There are usually many edges
Lenna 800 2570 850 of texture and noise other tharnn both the foreground and the
Tower 370 1500 390 background except in ideal texture-free and noise-free images
such as those used in Section IV-A. However, misextraction of
Sky 440 2160 320 . . : .
i the texture or noise as a contour is avoidable if a proper model

is used as the constraint of the contour line.
Continuity and smoothness are used as energy function con-

Figs. 13 and 14 show the results for color images we c&liraints in the snake method [3], [4]. This model works well for
Tower and Sky, respectivel320 x 240 pixels, RGB color, 24 smooth curved contours. However, sharp corners of contours
bits/pixel). In the block matching step, the sum of the mean are difficult to extract without making the weight coefficient
solute distances of the three color components was used asf@iémoothness small. Neglecting the smoothness may introduce
measure. The other procedures and the parameter values vi@gextraction of texture or noise.
the same as in the Lenna experiments.

As shown in Fig. 13, sharp corners were extracted accuratehgthod are shown in Fig. 15. We implemented the time-de-
in the full search. The n-step search included some errors silayed discrete dynamic programming algorithm [4], and param-
as a missing rooftop at the center and extraction of a part of ters including the weight coefficients for continuity, smooth-
background tower in the left part.

The cloud in Fig. 14 has a blurred contour on the left side. THier each image. Images on the left in Fig. 15 are the initial
contour was, however, extracted well using the same parametdeges, i.e., a rough shape was drawn by hand. The extracted con-
as in the above experiments in both thetep search and full tour by the snake method is shown on the right. The processing
search. Ther-step search was about five times faster than tliene is shown in Table Ill; there is little difference between the

full search.

The experimental results of contour extraction by the snake

ness and edge energy in the energy function were optimized

shake method and the proposed method withtstéep search.
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Fig. 15. Contour extraction by the snake method. The images on the left are the initial contours drawn by hand, and the images on the right are the contour
extracted images. The snake method failed to extract sharp corners as shown in (a), (b), and (d). The edges in background of (c) were misextuadd. The b
edges of the cloud in (e) could not be extracted.

Block matching required much time in the case of the propos€dy. 15(c) were misextracted. Those background edges which
method, and the snake method needed much preprocessingyéntically cross the object contour did not disturb the extraction
cluding smoothing of the original image and the edge energy the proposed method as can be seen in Fig. 12. The blurred
image, before the minimization process. contour of the cloud was extracted well by the proposed method
As shown in Fig. 15(a), the top of the sharp corner wass shown in Fig. 14. The snake method, however, could not
missed by the snake method, and only envelope is detecteddwriract the contour since the absolute value of the edge energy
the zigzag contour in (b) and (d), because of the constraintwés so small that the line in Fig. 15(e) passed through the cloud
smoothness. On the other hand, as shown in Figs. 7, 10, aodtour in the process of minimizing the energy function.
13, the self-affine model based on blockwise self-similarity can A smooth curved line does not have exact self-similarity in or-
match the contour corners as long as each block contains odiyary cases, and the extracted contour by the proposed method
a single corner, because a single corner shape has self-siminot perfectly smooth (the fractal dimension is greater than
larity. The edges of the background on the right-hand side aie) even thoughk is smooth. However, jagged edges did not
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appear in the experiments because the amplitude of the roughs] L. Cohen and I. Cohen, “Finite-element methods for active contour

ness was smaller than the pixel interval models and balloons for 2-D and 3-D imagelEE Trans. Pattern
' . Anal. Machine Intell.vol. 15, pp. 1131-1147, Nov. 1993.
The V‘_/eakness of Oyr method compar.ed with the 'Snake[G] B. Mandelbrot, The Fractal Geometry of Natur&V. H. Freeman and
method is that the applicable contour gap is bounded with the =~ Company, 1982. _
block size as mentioned in Section I1I-B. In the case that thel”] |\ Bameley s L. HurdFractal image Compression Wellesley,
gap is too large, a combination of the two methods, in which g] A. Jacquin, “A novel fractal block-coding technique for digital images,”

the snake method is applied first and then the proposed methoEj] ? ZFOC IC%SS?P %01990 _ppl 2225-2228. J J

. Ida and Y. Sambonsugi, “Image segmentation and contour detection
is applled would prowde a gOOd result. using fractal coding,1EEE Trans. Circuits Syst. Video Technofbl. 8,
pp. 968-975, Dec. 1998.

VI. CONCLUSIONS [10] T.Ida, Y. Sambonsugi, and T. Watanabe, “Boundary fitting of extracted
' objects using LIFS” (in Japanes€)rans. Inst. Electron., Inform.,
The self-affine map was defined as an extension of LIFS,  Commun. Eng. D-livol. J82-D-Il, pp. 1282-1289, Aug. 1999.

] T.Ida and Y. Sambonsugi, “Self-affine mapping system for object con-
with the applicability of the mapping system extending to 'mage[ tour extraction,” inProc. Int. Conf. Image Processing '99999, pp.

processing including image segmentation, edge detection, and 250-254.
compression. [12] N. Lu, Fractal Imaging New York: Academic, 1997.

o [13] T. Ida and T. Kagoshima, “Image decoding of fractal coding using
] A new method forfitting of the alpha maSk t_’oundary toan O_b' escape-time algorithm” (in Japanes@&)ans. Inst. Electron., Inform.,
ject contour was proposed as a hew application of the self-affine  Commun, Eng. D-|Ivol. J79-D-II, pp. 812-818, May 1996.
mapping system. It was shown that the proposed method pr({)lgl m gafnsl'e%':fadCIAa'SJ EvefYthre INEW YOffk: Academic, 198;3%

. Barnsley and A. Jacquin, “Application of recurrent iterated function
duces not only smooth curves but also sharp corners and highty systems to images,” iRroc. SPIE Visual Communications Image Pro-
accurate details, and it is capable of extracting both distinctand  cessingvol. 1001, 1988, pp. 122-131.
blurred edges without requiring parameters to be changed. [#6] R. Plompen, “Displacement compensated predictionMation Video

. Coding for Visual TelephonyTT Research Neher Laboratories, 1989,

was shown that even large gaps between the hand-drawn line |, "355 335
and the contour could be fitted well by a recursive procedure in
which the block size was progressively decreased. These fea-
tures reduce the time required for drawing contours by hand.

Since the behavior of the self-affine map shown in Ser
tion 1I-C is unique, we expect many more applications relate
to image edges, contours, and regions to be developed in
future. Those would include edge adaptive filtering, obje:

Takashi Ida (M'95) received the B.Eng. and M.Eng.
degrees in electrical engineering from Waseda Uni-
versity, Tokyo, Japan, in 1987 and 1989, respectively.
Since 1989, he has been with the Research and De-
velopment Center of Toshiba Corporation, Kawasaki,

based processing, recognition, searching and so on. Japan. His research interests include image compres-
— sion and image processing based on fractal theories.
i Mr. Ida received the 1994 Young Engineer Award
ACKNOWLEDGMENT | W from the Institute of Electronics, Information and
) Communication Engineers (IEICE), Japan. He
The authors would like to thank R. Tokunaga, Assistant Pro- also received awards for young engineers from the

fessor, University of Tsukuba, for his valuable suggestions. TH’@tltute of Electrical Engineers of Japan (IEEJ) in 1994, and from the Japan
. . ciety for Fuzzy Theory and Systems (SOFT) in 1996, respectively. He is a
authors are also grateful to the reviewers for their many usefilmper of IEICE.

comments.

REFERENCES

[1] N. Brady, “MPEG-4 standardized methods for the compression of arkt Yoko Sambonsugireceived the B. Eng. and the M.

trarily shaped video objectslEEE Trans. Circuits Syst. Video Technol. an' (&gkreﬁs in ellileci'ricallaﬁd pom[_)tute:(eﬂg:]neering
vol. 9, pp. 1170-1189, Dec, 1999, rom Yokohama National University, Yokohama,

Japan, in 1990 and 1992 respectively.

Since 1992, she has been with the Research
and Development Center of Toshiba Corporation,
Kawasaki, Japan. Her current research interests

[2] “Special issue on segmentation, description, and retrieval of video cc
tents,”IEEE Trans. Circuits Syst. Video Technaefol. 8, Sept. 1998.

[3] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contoul
models,”Int. J. Comput. Vis.vol. 1, no. 4, pp. 321-331, 1988. includ motion i ” di d

[4] A. Amini, T. Weymouth, and R. Jain, “Using dynamic programming LY include stillimotion image processing, coding an
for solving variational problems in visionJEEE Trans. Pattern Anal. segmentation. .
Machine Intel, vol. 12, pp. 855-867, Sept. 1990. \ Ms. Sambonsugi is a member of IEICE.

T



